ChatGLM3项目中使用LoRA微调模型加载指南
2025-05-16 18:47:07作者:余洋婵Anita
前言
在大型语言模型的应用中,LoRA(Low-Rank Adaptation)是一种高效的微调技术,它通过引入低秩矩阵来调整预训练模型的权重,大大减少了微调所需的计算资源和存储空间。本文将详细介绍如何在ChatGLM3项目中加载经过LoRA微调后的模型权重。
LoRA微调后的模型结构
当使用LoRA技术对ChatGLM3进行微调后,模型会生成以下几个关键文件:
- adapter_config.json - 包含LoRA适配器的配置信息
- adapter_model.bin - 存储LoRA适配器的权重参数
- 可能包含的其他检查点文件
加载LoRA微调模型的步骤
1. 准备模型目录
首先需要将微调后生成的模型文件放置在特定目录中。建议使用绝对路径来指定模型位置,这样可以避免路径解析错误。
2. 修改模型加载代码
在ChatGLM3的网页版demo中,加载模型的核心代码通常位于模型初始化部分。需要将原来的预训练模型路径替换为LoRA微调后的模型路径。
# 原始加载预训练模型的代码
# model_dir = "THUDM/chatglm3-6b"
# 修改为加载LoRA微调后的模型
model_dir = "/path/to/your/lora/fine-tuned/model"
3. 确保依赖库版本兼容
加载LoRA微调模型需要确保以下Python库的版本兼容:
- transformers >= 4.27.1
- peft (用于LoRA适配器加载)
- torch与CUDA版本匹配
4. 验证模型加载
加载后可以通过简单的推理测试来验证模型是否成功加载:
response = model.generate("你好")
print(response)
常见问题解决方案
- 路径错误:确保使用绝对路径,并检查路径中是否包含中文字符或特殊字符
- 版本冲突:创建干净的Python虚拟环境,安装指定版本的依赖库
- 显存不足:可以尝试减小batch size或使用量化版本
- 权重加载失败:检查模型文件是否完整,特别是adapter_model.bin文件
性能优化建议
- 对于推理场景,可以考虑将LoRA适配器与基础模型合并,提升推理速度
- 使用8-bit或4-bit量化技术减少显存占用
- 对于生产环境,建议将模型转换为ONNX或TensorRT格式
结语
通过LoRA技术微调ChatGLM3模型后,正确加载模型权重是应用的关键一步。本文详细介绍了加载过程和可能遇到的问题解决方案,希望能帮助开发者顺利将微调后的模型应用到实际场景中。随着模型规模的增大,LoRA等参数高效微调技术将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694