ChatGLM3项目中使用LoRA微调模型加载指南
2025-05-16 16:37:53作者:余洋婵Anita
前言
在大型语言模型的应用中,LoRA(Low-Rank Adaptation)是一种高效的微调技术,它通过引入低秩矩阵来调整预训练模型的权重,大大减少了微调所需的计算资源和存储空间。本文将详细介绍如何在ChatGLM3项目中加载经过LoRA微调后的模型权重。
LoRA微调后的模型结构
当使用LoRA技术对ChatGLM3进行微调后,模型会生成以下几个关键文件:
- adapter_config.json - 包含LoRA适配器的配置信息
- adapter_model.bin - 存储LoRA适配器的权重参数
- 可能包含的其他检查点文件
加载LoRA微调模型的步骤
1. 准备模型目录
首先需要将微调后生成的模型文件放置在特定目录中。建议使用绝对路径来指定模型位置,这样可以避免路径解析错误。
2. 修改模型加载代码
在ChatGLM3的网页版demo中,加载模型的核心代码通常位于模型初始化部分。需要将原来的预训练模型路径替换为LoRA微调后的模型路径。
# 原始加载预训练模型的代码
# model_dir = "THUDM/chatglm3-6b"
# 修改为加载LoRA微调后的模型
model_dir = "/path/to/your/lora/fine-tuned/model"
3. 确保依赖库版本兼容
加载LoRA微调模型需要确保以下Python库的版本兼容:
- transformers >= 4.27.1
- peft (用于LoRA适配器加载)
- torch与CUDA版本匹配
4. 验证模型加载
加载后可以通过简单的推理测试来验证模型是否成功加载:
response = model.generate("你好")
print(response)
常见问题解决方案
- 路径错误:确保使用绝对路径,并检查路径中是否包含中文字符或特殊字符
- 版本冲突:创建干净的Python虚拟环境,安装指定版本的依赖库
- 显存不足:可以尝试减小batch size或使用量化版本
- 权重加载失败:检查模型文件是否完整,特别是adapter_model.bin文件
性能优化建议
- 对于推理场景,可以考虑将LoRA适配器与基础模型合并,提升推理速度
- 使用8-bit或4-bit量化技术减少显存占用
- 对于生产环境,建议将模型转换为ONNX或TensorRT格式
结语
通过LoRA技术微调ChatGLM3模型后,正确加载模型权重是应用的关键一步。本文详细介绍了加载过程和可能遇到的问题解决方案,希望能帮助开发者顺利将微调后的模型应用到实际场景中。随着模型规模的增大,LoRA等参数高效微调技术将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
339
402
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247