SharpFuzz 使用教程
2024-08-27 06:09:23作者:戚魁泉Nursing
项目介绍
SharpFuzz 是一个基于 AFL(American Fuzzy Lop)的模糊测试工具,专门为 .NET 平台设计。它能够将 AFL 的强大功能引入到 .NET 环境中,帮助开发者发现和修复潜在的安全漏洞和错误。通过模糊测试,SharpFuzz 可以自动生成大量的随机输入数据,用于测试程序的健壮性和安全性。
项目快速启动
安装
首先,你需要安装 afl-fuzz 和 SharpFuzz 命令行工具。可以通过运行以下脚本来完成安装:
#!/bin/sh
set -eux
# 下载并解压最新的 afl-fuzz 源码包
wget http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz
tar -xvf afl-latest.tgz
rm afl-latest.tgz
cd afl-2.52b/
# 安装 afl-fuzz
sudo make install
cd ..
rm -rf afl-2.52b/
# 安装 SharpFuzz 命令行工具
dotnet tool install --global SharpFuzz.CommandLine
使用示例
以下是一个简单的使用示例,假设我们要对 Jil 这个快速的 JSON 序列化和反序列化库进行模糊测试:
- 创建一个新的 .NET 控制台项目,并添加 Jil 和 SharpFuzz 包:
dotnet new console -n JilFuzz
cd JilFuzz
dotnet add package Jil
dotnet add package SharpFuzz
- 在
Main函数中调用SharpFuzz.Fuzzer.OutOfProcess.Run方法,传入你要测试的函数:
using System;
using System.IO;
using SharpFuzz;
using Jil;
namespace JilFuzz
{
public class Program
{
public static void Main(string[] args)
{
Fuzzer.OutOfProcess.Run(stream =>
{
try
{
using (var reader = new StreamReader(stream))
{
JSON.DeserializeDynamic(reader);
}
}
catch (DeserializationException)
{
// 忽略反序列化异常
}
});
}
}
}
应用案例和最佳实践
应用案例
SharpFuzz 已经被用于发现多个 .NET 库中的安全漏洞,例如:
- AngleSharp: 通过模糊测试发现了
HtmlParser.Parse方法抛出InvalidOperationException和IndexOutOfRangeException的问题。
最佳实践
- 定期运行模糊测试:建议在持续集成(CI)流程中定期运行模糊测试,以确保新代码不会引入新的安全漏洞。
- 覆盖关键功能:重点测试库中的关键功能和复杂逻辑,以发现潜在的错误和漏洞。
- 共享发现:如果你通过 SharpFuzz 发现了有趣的错误,建议与社区共享,可以通过提交 issue 或 pull request 的方式。
典型生态项目
SharpFuzz 可以与以下生态项目结合使用,以增强模糊测试的效果:
- AFL:American Fuzzy Lop,一个广泛使用的模糊测试工具,SharpFuzz 基于 AFL 构建。
- libFuzzer:一个与 LLVM 集成的模糊测试引擎,可以与 SharpFuzz 结合使用,提供更强大的模糊测试能力。
- Mono Cecil:一个用于分析和修改 .NET 程序集的库,可以与 SharpFuzz 结合使用,进行更深入的代码分析和测试。
通过结合这些生态项目,可以构建一个强大的模糊测试环境,帮助开发者发现和修复更多的安全漏洞和错误。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882