SharpFuzz 使用教程
2024-08-27 06:09:23作者:戚魁泉Nursing
项目介绍
SharpFuzz 是一个基于 AFL(American Fuzzy Lop)的模糊测试工具,专门为 .NET 平台设计。它能够将 AFL 的强大功能引入到 .NET 环境中,帮助开发者发现和修复潜在的安全漏洞和错误。通过模糊测试,SharpFuzz 可以自动生成大量的随机输入数据,用于测试程序的健壮性和安全性。
项目快速启动
安装
首先,你需要安装 afl-fuzz 和 SharpFuzz 命令行工具。可以通过运行以下脚本来完成安装:
#!/bin/sh
set -eux
# 下载并解压最新的 afl-fuzz 源码包
wget http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz
tar -xvf afl-latest.tgz
rm afl-latest.tgz
cd afl-2.52b/
# 安装 afl-fuzz
sudo make install
cd ..
rm -rf afl-2.52b/
# 安装 SharpFuzz 命令行工具
dotnet tool install --global SharpFuzz.CommandLine
使用示例
以下是一个简单的使用示例,假设我们要对 Jil 这个快速的 JSON 序列化和反序列化库进行模糊测试:
- 创建一个新的 .NET 控制台项目,并添加 Jil 和 SharpFuzz 包:
dotnet new console -n JilFuzz
cd JilFuzz
dotnet add package Jil
dotnet add package SharpFuzz
- 在
Main函数中调用SharpFuzz.Fuzzer.OutOfProcess.Run方法,传入你要测试的函数:
using System;
using System.IO;
using SharpFuzz;
using Jil;
namespace JilFuzz
{
public class Program
{
public static void Main(string[] args)
{
Fuzzer.OutOfProcess.Run(stream =>
{
try
{
using (var reader = new StreamReader(stream))
{
JSON.DeserializeDynamic(reader);
}
}
catch (DeserializationException)
{
// 忽略反序列化异常
}
});
}
}
}
应用案例和最佳实践
应用案例
SharpFuzz 已经被用于发现多个 .NET 库中的安全漏洞,例如:
- AngleSharp: 通过模糊测试发现了
HtmlParser.Parse方法抛出InvalidOperationException和IndexOutOfRangeException的问题。
最佳实践
- 定期运行模糊测试:建议在持续集成(CI)流程中定期运行模糊测试,以确保新代码不会引入新的安全漏洞。
- 覆盖关键功能:重点测试库中的关键功能和复杂逻辑,以发现潜在的错误和漏洞。
- 共享发现:如果你通过 SharpFuzz 发现了有趣的错误,建议与社区共享,可以通过提交 issue 或 pull request 的方式。
典型生态项目
SharpFuzz 可以与以下生态项目结合使用,以增强模糊测试的效果:
- AFL:American Fuzzy Lop,一个广泛使用的模糊测试工具,SharpFuzz 基于 AFL 构建。
- libFuzzer:一个与 LLVM 集成的模糊测试引擎,可以与 SharpFuzz 结合使用,提供更强大的模糊测试能力。
- Mono Cecil:一个用于分析和修改 .NET 程序集的库,可以与 SharpFuzz 结合使用,进行更深入的代码分析和测试。
通过结合这些生态项目,可以构建一个强大的模糊测试环境,帮助开发者发现和修复更多的安全漏洞和错误。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250