Vercel AI SDK 对接中国主流大模型API的技术实践
背景与现状
随着人工智能技术的快速发展,中国本土的大模型服务商如腾讯、阿里云、华为等相继推出了自己的大语言模型API服务。由于某些国际主流API服务在中国地区的访问限制,国内开发者越来越依赖这些本土API提供商。本文将详细介绍如何使用Vercel AI SDK对接这些中国主流大模型API服务。
技术实现方案
基础对接方法
Vercel AI SDK提供了兼容的Provider接口,这使得对接符合API规范的中国大模型服务变得非常简单。以腾讯的DeepSeek R1模型为例:
import { createCompatibleProvider } from '@ai-sdk/compatible';
import { generateText } from 'ai';
const provider = createCompatibleProvider({
name: 'tencent-deepseek',
apiKey: 'your-api-key-here',
baseURL: 'https://api.lkeap.cloud.tencent.com/v1',
});
const { text, reasoning } = await generateText({
model: provider('deepseek-r1'),
prompt: '你的问题或指令',
});
这种对接方式不仅简洁,还能自动处理模型返回的思考过程(reasoning)和最终结果(text),极大简化了开发流程。
特殊场景处理
对于某些不完全兼容规范的API服务,如华为的SiliconFlow,我们需要对响应流进行特殊处理,特别是工具调用(function/tool call)场景:
const customFetch = async (input, init) => {
const response = await fetch(input, init);
if (response.headers.get('content-type')?.includes('text/event-stream')) {
const reader = response.body?.getReader();
const decoder = new TextDecoder();
return new Response(
new ReadableStream({
async start(controller) {
try {
while (true) {
const { done, value } = await reader.read();
if (done) {
controller.close();
break;
}
let chunk = decoder.decode(value);
// 修正工具调用格式
chunk = chunk.replace(/"type":\s*""/g, '"type":"function"');
chunk = chunk.replace(/"type":\s*null/g, '"type":"function"');
controller.enqueue(new TextEncoder().encode(chunk));
}
} catch (e) {
controller.error(e);
}
},
}),
response
);
}
return response;
};
createProvider({
name: 'siliconflow',
apiKey: 'your-siliconflow-key',
baseURL: 'https://api.siliconflow.cn/v1',
fetch: customFetch,
})
技术要点解析
-
兼容性处理:大多数中国大模型API都遵循API规范,这使得Vercel AI SDK能够无缝对接
-
流式响应处理:对于流式响应(streaming response),需要特别注意数据格式的兼容性,特别是工具调用场景
-
错误处理:在自定义fetch函数中,完善的错误处理机制至关重要
-
思考过程提取:Vercel AI SDK能够自动提取模型生成的思考过程(reasoning),这对理解模型决策非常有帮助
实践建议
-
API文档参考:对接前务必仔细阅读各厂商的API文档,了解其特殊要求和限制
-
测试先行:建议先使用简单的文本生成任务测试API连通性,再逐步增加复杂度
-
性能监控:对接后应建立完善的性能监控机制,跟踪API响应时间和成功率
-
错误处理:针对中国特有的网络环境,实现健壮的重试机制和错误处理逻辑
总结
Vercel AI SDK为对接中国主流大模型API提供了简洁高效的解决方案。通过其兼容接口和自定义fetch能力,开发者可以快速集成腾讯、阿里云、华为等厂商的大模型服务。本文介绍的技术方案已在生产环境得到验证,能够满足大多数AI应用场景的需求。随着中国大模型生态的不断发展,这种标准化对接方式将展现出更大的价值。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00