Terraform Provider Azurerm 中Express Route流量收集器与Log Analytics的集成实践
在Azure云环境中,Express Route流量收集器是一个重要的网络流量分析工具,它能够收集和分析通过Express Route电路的IPFIX流量数据。本文将详细介绍如何在Terraform Provider Azurerm中实现Express Route流量收集器与Log Analytics工作区的集成配置。
背景与问题分析
Express Route流量收集器通过IPFIX协议收集网络流量数据,这些数据通常需要发送到分析系统进行处理。Azure门户提供了将数据发送到特定Log Analytics工作区的选项,但在Terraform的azurerm_network_function_collector_policy资源中,ipfx_emission.destination_types仅支持"Azure Monitor"这一通用选项。
这种设计存在两个主要问题:
- 缺乏明确的目标工作区指定机制
- 部署后无法直观查看数据实际发送到哪个Log Analytics工作区
解决方案详解
通过分析Azure门户生成的部署模板,我们发现流量收集器实际上是通过诊断设置(Microsoft.Insights/diagnosticSettings)与Log Analytics工作区建立关联的。因此,正确的集成方法应该包含以下两个步骤:
1. 创建流量收集器策略
resource "azurerm_network_function_collector_policy" "example" {
name = "traffic-collector-policy"
traffic_collector_id = azurerm_network_function_azure_traffic_collector.example.id
location = azurerm_resource_group.example.location
ipfx_emission {
destination_types = ["AzureMonitor"]
}
ipfx_ingestion {
source_resource_ids = [azurerm_express_route_circuit.example.id]
}
}
2. 配置诊断设置关联Log Analytics工作区
resource "azurerm_monitor_diagnostic_setting" "traffic_collector_diag" {
name = "traffic-collector-diag"
target_resource_id = azurerm_network_function_azure_traffic_collector.example.id
log_analytics_workspace_id = azurerm_log_analytics_workspace.example.id
log_analytics_destination_type = "Dedicated"
enabled_log {
category = "ExpressRouteCircuitIpfix"
}
}
关键配置说明
-
log_analytics_destination_type:建议设置为"Dedicated",这样会在Log Analytics中创建资源特定的表,便于数据管理和查询。
-
enabled_log:必须包含"ExpressRouteCircuitIpfix"类别,这是Express Route流量数据的日志类别。
-
target_resource_id:需要指向流量收集器资源,而不是收集器策略资源。
最佳实践建议
-
集中化管理:在大型环境中,建议将多个流量收集器的数据发送到同一个中央Log Analytics工作区,便于统一监控和分析。
-
权限控制:确保服务主体或用户有权限在目标Log Analytics工作区中创建诊断设置。
-
数据保留策略:根据合规要求,在Log Analytics工作区中配置适当的数据保留期。
-
命名规范:为诊断设置使用清晰的命名,便于后续管理和维护。
总结
通过本文介绍的方法,我们可以在Terraform中实现Express Route流量收集器与特定Log Analytics工作区的精确关联。这种配置方式不仅解决了门户与Terraform配置的差异问题,还提供了更灵活的数据管理能力。对于需要精细控制分析数据流向的企业环境,这种方案尤为重要。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00