探索CDLA:中文文档布局分析的新篇章
2024-05-30 06:19:17作者:丁柯新Fawn
项目介绍
在数字化阅读日益普及的时代,对文本的理解已经超越了简单的字符识别,深入到版面结构分析的层次。CDLA,即Chinese Document Layout Analysis数据集,为这个领域提供了一个精心设计的资源库。专为中文文献场景打造,它涵盖了论文中常见的元素,如标题、正文、图像、表格等,并提供了详细的标注信息,以推动文档理解技术的发展。
项目技术分析
CDLA数据集基于Labelme工具进行标注,其标注格式与Labelme保持一致,便于开发者直接使用。每个图像与其对应的JSON文件包含了多个形状对象,详细描述了各种区域的类别(如标题、正文、页眉等)以及它们的多边形边界。这样的精细标注使得模型能够学习到更丰富的视觉特征和布局模式。
此外,CDLA还提供了一种便捷的转换工具,可以将标注数据转化为COCO格式,这使得项目无缝对接广泛应用的深度学习框架,如PyTorch和TensorFlow,从而简化了模型训练和评估的过程。
项目及技术应用场景
CDLA的数据集适用于多种实际应用,包括但不限于:
- 文档检索:通过精确的版面解析,提高文档检索系统的精度,使用户能更快地找到所需信息。
- 自动排版:对于电子出版或文档转换服务,CDLA可以帮助开发出智能排版系统,自动调整文本和图形的位置。
- 学术研究:学者可以利用此数据集进行机器学习和计算机视觉领域的实验,探索深度学习在版面分析中的潜力。
- OCR后处理:结合光学字符识别(OCR),CDLA可帮助提升整体识别准确率,特别是在复杂文档布局的场景中。
项目特点
- 丰富标签:10种不同的类别覆盖了论文的基本构成部分,满足多样化的应用场景需求。
- 大规模数据:5000张训练图像和1000张验证图像,为深度学习模型提供足够的训练样本。
- 易于使用:提供COCO格式转化工具,简化集成到现有深度学习框架的工作流程。
- 开放源代码:CDLA数据集免费开源,鼓励社区参与和贡献,共同推进技术进步。
总的来说,CDLA为中文文档布局分析带来了一场创新革命,无论是研究者还是开发者,都可以从这个项目中受益。通过利用CDLA,你可以开启新的旅程,探索自动化文档理解和处理的无限可能。立即下载并开始你的探索之旅吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178