selavi 的安装和配置教程
2025-05-17 18:47:22作者:伍希望
项目基础介绍
selavi 是一个开源项目,它提供了一个 PyTorch 实现和预训练模型,用于从未标记的视频中学习多模态音频视觉数据的标签。该项目主要使用 Python 编程语言。
项目使用的关键技术和框架
selavi 使用了多模态自监督学习技术,通过处理音频和视频数据,无需标记即可对数据进行聚类。项目主要依赖于以下技术和框架:
- PyTorch:一个流行的深度学习框架,用于构建和训练神经网络。
 - Torchvision:基于 PyTorch 的计算机视觉库,提供了许多预训练的模型和实用工具。
 
准备工作
在开始安装 selavi 之前,请确保您的系统已经安装了以下依赖项:
- Python 3.7.5
 - PyTorch 1.3.1
 - CUDA 10.0
 - conda(推荐使用 Anaconda)
 
此外,您需要准备以下数据集:VGG-Sound、Kinetics 和 AVE,并按照特定的文件夹结构进行预处理。
安装步骤
1. 克隆项目仓库
首先,您需要从 GitHub 上克隆 selavi 项目仓库到本地环境:
git clone https://github.com/facebookresearch/selavi.git
cd selavi
2. 创建虚拟环境并安装依赖
使用 conda 创建一个新的虚拟环境,并安装所需的依赖:
conda env create -f environment.yml
conda activate lab_vid
3. 预处理数据集
确保您的数据集文件夹结构如下所示:
{dataset_name}/{train,val,test}/{class_name}/{video_name}.mp4
如果数据集尚未预处理,您需要按照项目要求进行处理。
4. 单节点训练
要在一个节点上使用多个 GPU 进行训练,可以运行以下命令(以 VGG-Sound 数据集为例):
python -m torch.distributed.launch --nproc_per_node=8 main.py \
--root_dir /path/to/VGGSound \
--epochs 200 \
--batch_size 16 \
--base_lr 1e-2 \
--ds_name vgg_sound \
--use_mlp True \
--mlp_dim 309 \
--headcount 10 \
--match True \
--distribution gauss \
--ind_groups 2
5. 多节点训练
如果需要跨多个节点进行分布式训练,可以使用 Slurm 作业调度系统。创建一个 SBATCH 脚本,然后提交作业:
sbatch ./scripts/master.sh
注意,您可能需要从 sbatch 脚本中移除版权声明才能运行。
6. 模型评估和可视化
完成训练后,可以使用项目提供的脚本对模型进行评估和可视化。
通过以上步骤,您应该能够成功安装和配置 selavi 项目,并开始您的多模态自监督学习实验。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445