NeMo-Guardrails中实现自定义动作的流式响应输出
2025-06-12 17:37:01作者:齐添朝
在构建对话系统时,流式响应(Streaming Response)能够显著提升用户体验,使对话更加自然流畅。本文将详细介绍如何在NeMo-Guardrails框架中为自定义动作实现流式输出功能。
流式响应的核心原理
流式响应的核心在于逐步发送生成的内容,而不是等待整个响应完成后再一次性发送。在NeMo-Guardrails中,这一功能通过回调机制实现,允许LLM(大语言模型)在生成每个token时立即将其发送到客户端。
实现步骤详解
1. 获取流式处理句柄
NeMo-Guardrails内部维护了一个流式处理句柄(streaming handler),可以通过streaming_handler_var.get()方法获取。这个句柄负责管理内容的流式传输。
2. 配置LLM调用参数
在调用LLM时,需要将流式处理句柄作为回调函数传入。这通过LangChain的RunnableConfig实现:
from langchain_core.runnables.config import RunnableConfig
call_config = RunnableConfig(callbacks=[streaming_handler_var.get()])
3. 异步调用LLM
使用异步调用方式(ainvoke)来触发LLM生成内容,并传入配置参数:
response = await llm.ainvoke(user_query, config=call_config)
4. 完整示例代码
下面是一个完整的自定义动作实现示例:
@action(is_system_action=True)
async def call_llm(user_query: str, llm: Optional[BaseLLM]) -> str:
# 获取流式处理句柄
handler = streaming_handler_var.get()
# 配置回调
call_config = RunnableConfig(callbacks=[handler])
# 异步调用LLM并启用流式
response = await llm.ainvoke(user_query, config=call_config)
# 返回最终完整响应
return response.content
技术要点说明
-
异步处理:必须使用
async/await语法,确保不阻塞事件循环。 -
回调机制:流式处理依赖于LangChain的回调系统,每个生成的token都会触发回调。
-
返回值处理:虽然实现了流式输出,但仍需返回完整内容供后续处理。
应用场景
这种流式输出技术特别适用于:
- 长文本生成场景
- 实时对话系统
- 需要快速反馈的用户界面
注意事项
- 确保LLM本身支持流式输出
- 客户端需要能够处理流式响应
- 错误处理需要考虑流式场景下的特殊情况
通过上述方法,开发者可以轻松地在NeMo-Guardrails中为自定义动作添加流式输出功能,显著提升对话系统的用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136