NeMo-Guardrails中实现自定义动作的流式响应输出
2025-06-12 21:28:54作者:齐添朝
在构建对话系统时,流式响应(Streaming Response)能够显著提升用户体验,使对话更加自然流畅。本文将详细介绍如何在NeMo-Guardrails框架中为自定义动作实现流式输出功能。
流式响应的核心原理
流式响应的核心在于逐步发送生成的内容,而不是等待整个响应完成后再一次性发送。在NeMo-Guardrails中,这一功能通过回调机制实现,允许LLM(大语言模型)在生成每个token时立即将其发送到客户端。
实现步骤详解
1. 获取流式处理句柄
NeMo-Guardrails内部维护了一个流式处理句柄(streaming handler),可以通过streaming_handler_var.get()方法获取。这个句柄负责管理内容的流式传输。
2. 配置LLM调用参数
在调用LLM时,需要将流式处理句柄作为回调函数传入。这通过LangChain的RunnableConfig实现:
from langchain_core.runnables.config import RunnableConfig
call_config = RunnableConfig(callbacks=[streaming_handler_var.get()])
3. 异步调用LLM
使用异步调用方式(ainvoke)来触发LLM生成内容,并传入配置参数:
response = await llm.ainvoke(user_query, config=call_config)
4. 完整示例代码
下面是一个完整的自定义动作实现示例:
@action(is_system_action=True)
async def call_llm(user_query: str, llm: Optional[BaseLLM]) -> str:
# 获取流式处理句柄
handler = streaming_handler_var.get()
# 配置回调
call_config = RunnableConfig(callbacks=[handler])
# 异步调用LLM并启用流式
response = await llm.ainvoke(user_query, config=call_config)
# 返回最终完整响应
return response.content
技术要点说明
-
异步处理:必须使用
async/await语法,确保不阻塞事件循环。 -
回调机制:流式处理依赖于LangChain的回调系统,每个生成的token都会触发回调。
-
返回值处理:虽然实现了流式输出,但仍需返回完整内容供后续处理。
应用场景
这种流式输出技术特别适用于:
- 长文本生成场景
- 实时对话系统
- 需要快速反馈的用户界面
注意事项
- 确保LLM本身支持流式输出
- 客户端需要能够处理流式响应
- 错误处理需要考虑流式场景下的特殊情况
通过上述方法,开发者可以轻松地在NeMo-Guardrails中为自定义动作添加流式输出功能,显著提升对话系统的用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869