NeMo-Guardrails中实现自定义动作的流式响应输出
2025-06-12 05:55:21作者:齐添朝
在构建对话系统时,流式响应(Streaming Response)能够显著提升用户体验,使对话更加自然流畅。本文将详细介绍如何在NeMo-Guardrails框架中为自定义动作实现流式输出功能。
流式响应的核心原理
流式响应的核心在于逐步发送生成的内容,而不是等待整个响应完成后再一次性发送。在NeMo-Guardrails中,这一功能通过回调机制实现,允许LLM(大语言模型)在生成每个token时立即将其发送到客户端。
实现步骤详解
1. 获取流式处理句柄
NeMo-Guardrails内部维护了一个流式处理句柄(streaming handler),可以通过streaming_handler_var.get()
方法获取。这个句柄负责管理内容的流式传输。
2. 配置LLM调用参数
在调用LLM时,需要将流式处理句柄作为回调函数传入。这通过LangChain的RunnableConfig
实现:
from langchain_core.runnables.config import RunnableConfig
call_config = RunnableConfig(callbacks=[streaming_handler_var.get()])
3. 异步调用LLM
使用异步调用方式(ainvoke
)来触发LLM生成内容,并传入配置参数:
response = await llm.ainvoke(user_query, config=call_config)
4. 完整示例代码
下面是一个完整的自定义动作实现示例:
@action(is_system_action=True)
async def call_llm(user_query: str, llm: Optional[BaseLLM]) -> str:
# 获取流式处理句柄
handler = streaming_handler_var.get()
# 配置回调
call_config = RunnableConfig(callbacks=[handler])
# 异步调用LLM并启用流式
response = await llm.ainvoke(user_query, config=call_config)
# 返回最终完整响应
return response.content
技术要点说明
-
异步处理:必须使用
async/await
语法,确保不阻塞事件循环。 -
回调机制:流式处理依赖于LangChain的回调系统,每个生成的token都会触发回调。
-
返回值处理:虽然实现了流式输出,但仍需返回完整内容供后续处理。
应用场景
这种流式输出技术特别适用于:
- 长文本生成场景
- 实时对话系统
- 需要快速反馈的用户界面
注意事项
- 确保LLM本身支持流式输出
- 客户端需要能够处理流式响应
- 错误处理需要考虑流式场景下的特殊情况
通过上述方法,开发者可以轻松地在NeMo-Guardrails中为自定义动作添加流式输出功能,显著提升对话系统的用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511