Segment-Geospatial项目在ArcGIS Pro 3.2环境下的安装问题分析
问题背景
在使用Mac设备通过VMware Fusion虚拟Windows 11环境安装ArcGIS Pro 3.2时,尝试安装Segment-Geospatial项目中的samgeo模块时遇到了运行时错误。该问题主要出现在使用mamba安装依赖包的过程中。
错误现象
安装过程中出现了以下关键错误信息:
Download error (28) Timeout was reached [https://conda.anaconda.org/esri/win-64/pytorch-1.8.2-py3.9_cuda11.1_cudnn8.1_6.cond]
Operation too slow. Less than 30 bytes/sec transferred the last 60 seconds
这表明在尝试下载PyTorch包时出现了网络超时问题,下载速度极慢(低于30字节/秒)。
问题原因分析
-
网络连接问题:这是最直接的原因,安装过程中需要从conda源下载多个依赖包,网络不稳定或速度过慢会导致下载失败。
-
虚拟环境因素:虽然使用VMware Fusion虚拟Windows环境理论上可以正常运行ArcGIS Pro,但网络配置可能需要特别注意。
-
依赖包大小:PyTorch等深度学习框架的包体积较大,对网络稳定性要求更高。
-
conda源问题:默认的conda源可能在特定地区或网络环境下访问速度不理想。
解决方案建议
-
检查网络连接:确保虚拟机网络配置正确,可以尝试以下方法:
- 测试虚拟机内外的网络速度
- 检查防火墙设置是否阻止了conda的下载
- 尝试使用有线连接替代无线连接
-
更换conda源:可以使用国内镜像源提高下载速度,如清华源或阿里源。
-
分步安装:尝试单独安装大体积的依赖包,如先单独安装PyTorch,再安装其他依赖。
-
离线安装:在网速良好的环境中先下载好所有依赖包,然后在目标环境中进行离线安装。
-
环境隔离:考虑使用conda创建一个全新的环境,而不是在ArcGIS Pro的默认环境中安装。
技术细节说明
Segment-Geospatial项目依赖于多个科学计算和地理空间分析库,其中PyTorch作为深度学习框架是关键依赖之一。在Windows ARM架构下,某些包的兼容性可能需要特别注意。
安装过程中,conda/mamba会解析依赖关系并下载适合当前平台(这里是win-64)的包版本。网络问题是最常见的安装障碍之一,特别是在企业网络或特殊网络配置环境下。
总结
在虚拟环境中安装复杂的Python科学计算栈时,网络问题是最常见的障碍。建议用户首先排除网络连接问题,然后考虑使用更稳定的安装源或离线安装方式。如果问题持续存在,可能需要考虑在原生Windows环境而非虚拟机中进行安装测试,以排除虚拟化环境带来的潜在影响。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









