Blockscout项目中地址交易列表加载性能优化分析
2025-06-17 14:13:02作者:宣海椒Queenly
问题背景
在区块链浏览器Blockscout的实际使用中,我们发现当查询某些特定智能合约地址的交易记录时,系统响应速度异常缓慢。这种情况尤其出现在以下场景:
- 目标地址是一个智能合约
- 该地址有大量历史交易记录
- 这些交易都发生在较早的时间点
技术分析
通过深入调查,我们发现问题的根源在于PostgreSQL数据库查询优化器选择了非最优的索引策略。具体表现为:
EXPLAIN SELECT * FROM transactions WHERE to_address_hash='\xa45b42a4855ac5cfefc64fd7079da6416511ec22'
ORDER BY block_number DESC limit 51;
查询计划显示系统使用了transactions_block_number_index索引,这导致了全表扫描和过滤操作:
Limit (cost=0.44..113.20 rows=51 width=842)
-> Index Scan Backward using transactions_block_number_index on transactions (cost=0.44..2283644.92 rows=1032808 width=842)
Filter: (to_address_hash = '\xa45b42a4855cfefc64fd7079da6416511ec22'::bytea)
这种执行计划对于大数据量的表来说效率极低,因为:
- 它需要扫描整个区块号索引
- 然后对每一条记录应用过滤条件
- 最后才进行排序和限制
优化方案
实际上,系统中已经存在一个更适合此查询的复合索引:
transactions_to_address_hash_with_pending_index_asc,其结构为:
btree (to_address_hash, block_number, index, inserted_at, hash DESC)
这个索引的优势在于:
- 可以直接通过to_address_hash快速定位相关记录
- 已经按照block_number排序,避免了额外的排序操作
- 完全覆盖了查询条件,无需额外的过滤步骤
实施建议
针对这个问题,我们建议采取以下优化措施:
-
强制使用更优索引:通过查询提示或修改查询语句,确保系统使用复合索引而非单字段索引。
-
索引优化:考虑调整现有索引的顺序或创建专门的索引来优化这类查询。
-
查询重写:可能需要重写API端点中的查询逻辑,使其更适合数据库优化器的理解。
-
监控机制:建立查询性能监控,及时发现类似性能问题。
总结
数据库索引选择不当是区块链浏览器类应用常见的性能瓶颈。通过合理设计索引和优化查询,可以显著提升Blockscout在处理大地址交易列表时的响应速度。特别是在处理智能合约地址时,由于交易量通常较大,这种优化带来的性能提升会更加明显。
对于区块链浏览器这类需要处理海量数据的应用,持续的性能优化和数据库调优是保证良好用户体验的关键。建议开发团队定期审查高频查询的执行计划,确保数据库始终以最优方式处理用户请求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136