InstagramUnfollowers项目中的粉丝关系状态获取技术解析
2025-06-20 19:45:03作者:何举烈Damon
技术背景
InstagramUnfollowers是一个用于分析Instagram用户粉丝关系的开源工具,其中核心功能之一就是获取用户之间的关注状态(即判断某个用户是否关注了你)。这项功能在社交媒体营销和个人账号管理中具有重要价值。
传统API实现方式
在项目的主文件main.tsx中,开发者通过Line 239处的代码实现了对Instagram API的调用。传统实现使用了Instagram的GraphQL接口,其请求URL结构如下:
https://www.instagram.com/graphql/query/?query_hash=3dec7e2c57367ef3da3d987d89f9dbc8&variables={"id":"${ds_user_id}","include_reel":"true","fetch_mutual":"false","first":"50"}
这个API调用有几个关键参数需要注意:
first参数控制每次请求返回的用户数量,传统设置为24,但实验发现可以提高到50include_reel参数控制是否包含Reel相关信息fetch_mutual参数决定是否获取共同关注信息
现代API的变化
随着Instagram平台的更新,传统的GraphQL API正在被逐步替代。现代实现方式采用了REST风格的API端点:
https://www.instagram.com/api/v1/friendships/[ds_user_id]/following/?count=12
这个新API有以下特点:
- 单次请求最多可返回200个用户信息(超过200会返回400错误)
- 响应数据结构更为简洁,但缺少直接的关注状态信息
- 需要额外的API调用来获取每个用户的详细关注状态
技术挑战与解决方案
认证与防封禁
无论使用传统还是现代API,都需要处理以下技术挑战:
- 必须传递完整的cookie和存储数据才能模拟合法请求
- 请求频率和批量大小需要谨慎控制,否则可能导致账号被封禁
- 现代实现需要额外的请求来匹配用户ID和关注状态
性能优化策略
对于大规模粉丝列表分析,可以采用以下优化方法:
- 先获取完整的粉丝列表和关注列表
- 然后进行集合比对,找出未回关的用户
- 对于现代API,可以批量处理用户ID以减少请求次数
Threads平台的兼容性考虑
Threads作为Instagram的姊妹平台,其API结构与Instagram高度相似。理论上可以通过以下方式实现兼容:
- 检测当前平台是Instagram还是Threads
- 根据平台动态调整API端点URL
- 处理可能存在的少量字段差异
最佳实践建议
- 对于传统API,建议将
first参数设置为50以平衡性能和稳定性 - 对于现代API,建议采用200的批量大小,但要增加适当的请求间隔
- 实现完善的错误处理和重试机制
- 考虑使用缓存减少重复请求
未来发展方向
随着Instagram平台持续更新,这类工具需要:
- 建立更灵活的API适配层
- 开发混合策略,同时支持传统和现代API
- 增强反检测机制,降低封禁风险
- 扩展对Threads等关联平台的支持
通过深入理解这些技术细节,开发者可以构建更稳定、高效的Instagram粉丝关系分析工具。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660