首页
/ XGBoost项目中Bosch数据集准确率下降问题分析

XGBoost项目中Bosch数据集准确率下降问题分析

2025-05-06 23:48:54作者:咎岭娴Homer

问题背景

在XGBoost机器学习框架的最新开发过程中,开发团队发现了一个值得关注的问题:在Bosch生产线性能数据集上,模型的准确率出现了明显下降。具体表现为,在提交ab8aa6f126156ad7fffb56a4a9baae06c0228f85版本中,使用100个基学习器时准确率达到0.844,而在后续版本ab228cc78d054fc6652728fdcfc229ee0e4de822中,准确率下降至0.762。

问题复现与验证

通过构建最小复现案例,研究人员确认了这一问题的存在。测试代码加载了Bosch数据集的训练和测试数据,使用相同的参数配置(包括最大深度为8、学习率为0.1、使用直方图树方法等)进行模型训练。特别值得注意的是,参数中设置了scale_pos_weight=173.63348001466812,这是一个较大的类别权重值。

测试结果表明:

  • 在XGBoost 2.1版本中,训练准确率为0.831
  • 在master分支最新版本中,训练准确率为0.847

问题根源分析

经过深入调查,开发团队发现问题的根源在于初始化方法的改变。最新版本中引入的基于均值的初始化方法没有充分考虑scale_pos_weight参数的影响。在类别不平衡问题中,scale_pos_weight是一个关键参数,它用于调整正负样本的权重比例,帮助模型更好地处理少数类样本。

当使用较大的scale_pos_weight值时,基于均值的初始化方法无法正确反映数据分布的真实情况,导致模型初始预测偏离最优值,进而影响整个训练过程的收敛方向和最终模型性能。

解决方案与改进方向

针对这一问题,开发团队提出了以下改进方向:

  1. 修改初始化方法,使其能够正确考虑scale_pos_weight参数的影响
  2. 在类别不平衡问题中,采用更稳健的初始化策略
  3. 确保初始化阶段与后续提升树训练阶段的一致性

对实际应用的影响

这一问题特别值得关注,因为:

  1. Bosch数据集代表了一类真实世界的工业数据集,具有重要的实际应用价值
  2. 类别不平衡问题在工业检测、故障诊断等场景中非常常见
  3. 初始化方法的选择对模型最终性能有重要影响

开发团队表示将尽快修复这一问题,确保XGBoost在处理类别不平衡数据集时能够保持稳定的性能表现。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
198
279
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
346
1.33 K