XGBoost项目中Bosch数据集准确率下降问题分析
2025-05-06 02:39:56作者:咎岭娴Homer
问题背景
在XGBoost机器学习框架的最新开发过程中,开发团队发现了一个值得关注的问题:在Bosch生产线性能数据集上,模型的准确率出现了明显下降。具体表现为,在提交ab8aa6f126156ad7fffb56a4a9baae06c0228f85版本中,使用100个基学习器时准确率达到0.844,而在后续版本ab228cc78d054fc6652728fdcfc229ee0e4de822中,准确率下降至0.762。
问题复现与验证
通过构建最小复现案例,研究人员确认了这一问题的存在。测试代码加载了Bosch数据集的训练和测试数据,使用相同的参数配置(包括最大深度为8、学习率为0.1、使用直方图树方法等)进行模型训练。特别值得注意的是,参数中设置了scale_pos_weight=173.63348001466812,这是一个较大的类别权重值。
测试结果表明:
- 在XGBoost 2.1版本中,训练准确率为0.831
- 在master分支最新版本中,训练准确率为0.847
问题根源分析
经过深入调查,开发团队发现问题的根源在于初始化方法的改变。最新版本中引入的基于均值的初始化方法没有充分考虑scale_pos_weight参数的影响。在类别不平衡问题中,scale_pos_weight是一个关键参数,它用于调整正负样本的权重比例,帮助模型更好地处理少数类样本。
当使用较大的scale_pos_weight值时,基于均值的初始化方法无法正确反映数据分布的真实情况,导致模型初始预测偏离最优值,进而影响整个训练过程的收敛方向和最终模型性能。
解决方案与改进方向
针对这一问题,开发团队提出了以下改进方向:
- 修改初始化方法,使其能够正确考虑scale_pos_weight参数的影响
- 在类别不平衡问题中,采用更稳健的初始化策略
- 确保初始化阶段与后续提升树训练阶段的一致性
对实际应用的影响
这一问题特别值得关注,因为:
- Bosch数据集代表了一类真实世界的工业数据集,具有重要的实际应用价值
- 类别不平衡问题在工业检测、故障诊断等场景中非常常见
- 初始化方法的选择对模型最终性能有重要影响
开发团队表示将尽快修复这一问题,确保XGBoost在处理类别不平衡数据集时能够保持稳定的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355