探索网络安全新维度:DorkNet - 漏洞搜索自动化工具
项目介绍
DorkNet 是一个基于 Python 和 Selenium 的智能脚本,专为自动搜索网络上的易受攻击应用程序而设计。它能处理单个或一系列的 "Google Hacking Dorks"(即高级搜索语法),找到可能暴露的安全漏洞,然后将结果保存到文本文件中,以便进一步利用如 SQLmap 这样的工具进行分析和渗透测试。
项目技术分析
DorkNet 靠谱之处在于其巧妙地结合了 Selenium 和 Mozilla 的 Geckodriver。Selenium 是一个强大的浏览器自动化框架,能够模拟真实用户的浏览行为,而 Geckodriver 则是 Firefox 浏览器的WebDriver支持,使得自动化脚本能与浏览器进行通信。这样,DorkNet 就可以避免被搜索引擎识别为机器人,从而降低了触发验证码的概率。
此外,DorkNet 还提供了一种可选功能,允许用户通过代理服务器运行,增强了匿名性和灵活性。对于大型的漏洞扫描任务,还有实验性的 "Headless Mode" 功能,可以在没有图形界面的情况下运行,提高效率。
项目及技术应用场景
DorkNet 在以下场景中表现出色:
- 安全审计:在进行渗透测试时,你可以快速寻找目标系统中的潜在弱点。
- 教育研究:学习网络安全的学生可以了解如何查找和识别公开的漏洞,增强对网络安全的理解。
- 企业内部安全检查:公司可以定期运行 DorkNet 来确保其在线资产不会暴露在公共视野中。
项目特点
- 自动化搜索:输入关键词或列表,DorkNet 自动执行,节省手动搜索的时间。
- 灵活的配置选项:支持单个 dork 搜索,列表搜索,以及是否开启详细输出模式。
- 代理支持:可以通过代理隐藏你的IP地址,提升安全性。
- Headless Mode:无界面模式让大批量搜索更加高效。
- 集成于 BlackArch Linux:作为一款预装工具,适用于专业的渗透测试环境。
为了使用 DorkNet,首先需要安装 Geckodriver 和其他依赖项,DorkNet 提供了一个便捷的 shell 脚本来帮助完成这个过程。一旦准备好,只需一行命令即可启动你的漏洞搜索之旅。
python dorknet.py -d inurl:show.php?id= -v
或者,如果你有一个包含多个 dorks 的列表,可以运行:
DorkNet.py -l /path/to/list.txt --verbose
请注意,遇到偶尔出现的验证码时,请按照提示操作,DorkNet 会继续完成剩余的工作。
DorkNet 是一个强大且实用的工具,为网络安全专业人士提供了新的视角,通过自动化手段揭示互联网的脆弱性。无论你是新手还是经验丰富的开发者,都将从 DorkNet 中获益良多。现在就加入 DorkNet 的世界,一起探索网络深处的秘密吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









