探索网络安全新维度:DorkNet - 漏洞搜索自动化工具
项目介绍
DorkNet 是一个基于 Python 和 Selenium 的智能脚本,专为自动搜索网络上的易受攻击应用程序而设计。它能处理单个或一系列的 "Google Hacking Dorks"(即高级搜索语法),找到可能暴露的安全漏洞,然后将结果保存到文本文件中,以便进一步利用如 SQLmap 这样的工具进行分析和渗透测试。
项目技术分析
DorkNet 靠谱之处在于其巧妙地结合了 Selenium 和 Mozilla 的 Geckodriver。Selenium 是一个强大的浏览器自动化框架,能够模拟真实用户的浏览行为,而 Geckodriver 则是 Firefox 浏览器的WebDriver支持,使得自动化脚本能与浏览器进行通信。这样,DorkNet 就可以避免被搜索引擎识别为机器人,从而降低了触发验证码的概率。
此外,DorkNet 还提供了一种可选功能,允许用户通过代理服务器运行,增强了匿名性和灵活性。对于大型的漏洞扫描任务,还有实验性的 "Headless Mode" 功能,可以在没有图形界面的情况下运行,提高效率。
项目及技术应用场景
DorkNet 在以下场景中表现出色:
- 安全审计:在进行渗透测试时,你可以快速寻找目标系统中的潜在弱点。
- 教育研究:学习网络安全的学生可以了解如何查找和识别公开的漏洞,增强对网络安全的理解。
- 企业内部安全检查:公司可以定期运行 DorkNet 来确保其在线资产不会暴露在公共视野中。
项目特点
- 自动化搜索:输入关键词或列表,DorkNet 自动执行,节省手动搜索的时间。
- 灵活的配置选项:支持单个 dork 搜索,列表搜索,以及是否开启详细输出模式。
- 代理支持:可以通过代理隐藏你的IP地址,提升安全性。
- Headless Mode:无界面模式让大批量搜索更加高效。
- 集成于 BlackArch Linux:作为一款预装工具,适用于专业的渗透测试环境。
为了使用 DorkNet,首先需要安装 Geckodriver 和其他依赖项,DorkNet 提供了一个便捷的 shell 脚本来帮助完成这个过程。一旦准备好,只需一行命令即可启动你的漏洞搜索之旅。
python dorknet.py -d inurl:show.php?id= -v
或者,如果你有一个包含多个 dorks 的列表,可以运行:
DorkNet.py -l /path/to/list.txt --verbose
请注意,遇到偶尔出现的验证码时,请按照提示操作,DorkNet 会继续完成剩余的工作。
DorkNet 是一个强大且实用的工具,为网络安全专业人士提供了新的视角,通过自动化手段揭示互联网的脆弱性。无论你是新手还是经验丰富的开发者,都将从 DorkNet 中获益良多。现在就加入 DorkNet 的世界,一起探索网络深处的秘密吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00