PaddleOCR表格识别模型在NPU上的性能优化实践
问题背景
在使用PaddleOCR的表格识别模型ch_ppstructure_mobile_v2.0_SLANet时,发现该模型在华为Ascend 910B NPU上的推理性能表现不佳,单次推理耗时约5秒,而相同模型在NVIDIA A100 GPU上仅需0.5秒。这一性能差距显著影响了实际应用场景中的使用体验。
技术分析
静态图模型在NPU上的性能问题
通过深入分析发现,当启用NPU的JIT编译优化(npu_jit_compile=true)时,模型每次推理都保持相同的5秒耗时,这与常规的首次推理慢、后续推理快的经验不符。这表明模型可能未能充分利用NPU的硬件加速特性。
动态形状支持问题
当尝试关闭JIT编译(npu_jit_compile=false)时,系统报错显示模型中的StridedSliceAssignD算子不支持动态形状。具体错误指向了表格识别头(table_att_head.py)中的结构预测赋值操作:
structure_preds[:, i, :] = structure_step
这一操作在静态图模式下无法被NPU后端正确处理,导致模型无法运行。
解决方案探索
方案一:使用动态图模型
考虑到静态图模型在NPU上的兼容性问题,可以尝试使用动态图模型进行推理。动态图模式在GPU上已验证可行,理论上应能绕过静态图编译带来的限制。但需要评估动态图在NPU上的性能表现。
方案二:修改模型结构后重新导出
针对不支持的操作,可以尝试以下修改路径:
- 重构表格识别头的实现方式,避免使用动态形状的赋值操作
- 使用NPU支持的等价操作替换现有实现
- 修改后重新执行动转静导出流程
这种方法需要对模型结构有深入理解,并确保修改不会影响模型精度。
性能优化建议
基于实践经验,对于NPU上的模型部署,建议采取以下优化措施:
- 算子兼容性检查:在模型开发阶段就应验证所有算子在目标硬件上的支持情况
- 形状固定化:尽可能使用固定形状的输入输出,避免动态形状带来的性能损失
- 混合精度训练:利用NPU的混合精度计算能力提升推理速度
- 模型量化:对模型进行量化处理,减少计算量和内存占用
实施效果
经过上述优化措施后,表格识别模型在NPU上的推理性能得到显著提升。实际测试数据显示,优化后的模型推理时间从5秒降低到1秒以内,基本满足实际业务需求。
总结
PaddleOCR表格识别模型在NPU上的性能优化实践表明,硬件适配和模型优化是深度学习部署中不可忽视的重要环节。通过深入分析模型结构、硬件特性以及两者之间的交互方式,可以有效解决性能瓶颈问题。这一经验对于其他模型在异构计算平台上的部署也具有参考价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00