在recipe-scrapers项目中实现对"A Healthy Slice of Life"网站的支持
在开源项目recipe-scrapers的开发过程中,开发者bcspragu提出了一个增强需求:为美食博客"A Healthy Slice of Life"添加支持。这个需求的核心目标是让recipe-scrapers能够正确解析该网站上的食谱内容,例如红扁豆胡萝卜咖喱食谱页面。
recipe-scrapers是一个专门用于从各种美食网站抓取和解析食谱数据的Python库。它通过为每个支持的网站实现特定的解析器来工作,这些解析器能够处理不同网站各异的HTML结构和数据组织方式。
对于"A Healthy Slice of Life"这个网站,开发者已经完成了功能实现,主要包括以下技术要点:
-
网站特定解析器的开发:需要分析目标网站的HTML结构,识别出食谱标题、配料表、烹饪步骤、图片等关键信息的DOM位置。
-
数据提取逻辑:编写代码从识别出的DOM节点中提取文本内容,并进行必要的清洗和格式化,确保输出的食谱数据结构统一。
-
异常处理:考虑到网站可能改版或页面结构变化,需要添加适当的错误处理和日志记录机制。
-
测试用例:为新支持的网站添加测试用例,验证解析器在各种情况下的正确性和健壮性。
实现这类功能时,开发者通常会面临几个技术挑战:网站可能使用动态加载内容、反爬虫机制,或者复杂的HTML结构。recipe-scrapers项目通过模块化设计和良好的抽象,使得添加对新网站的支持变得相对简单。
对于想要贡献类似功能的开发者,建议先研究目标网站的页面结构,可以使用浏览器开发者工具分析DOM。然后参考项目中已有的解析器实现,保持代码风格一致。最后,务必添加充分的测试用例,确保功能的可靠性。
这个增强功能的实现展示了开源社区协作的力量,通过不断扩展支持的网站列表,recipe-scrapers项目为开发者提供了更强大的食谱数据获取能力,也为最终用户带来了更好的使用体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00