在recipe-scrapers项目中实现对"A Healthy Slice of Life"网站的支持
在开源项目recipe-scrapers的开发过程中,开发者bcspragu提出了一个增强需求:为美食博客"A Healthy Slice of Life"添加支持。这个需求的核心目标是让recipe-scrapers能够正确解析该网站上的食谱内容,例如红扁豆胡萝卜咖喱食谱页面。
recipe-scrapers是一个专门用于从各种美食网站抓取和解析食谱数据的Python库。它通过为每个支持的网站实现特定的解析器来工作,这些解析器能够处理不同网站各异的HTML结构和数据组织方式。
对于"A Healthy Slice of Life"这个网站,开发者已经完成了功能实现,主要包括以下技术要点:
-
网站特定解析器的开发:需要分析目标网站的HTML结构,识别出食谱标题、配料表、烹饪步骤、图片等关键信息的DOM位置。
-
数据提取逻辑:编写代码从识别出的DOM节点中提取文本内容,并进行必要的清洗和格式化,确保输出的食谱数据结构统一。
-
异常处理:考虑到网站可能改版或页面结构变化,需要添加适当的错误处理和日志记录机制。
-
测试用例:为新支持的网站添加测试用例,验证解析器在各种情况下的正确性和健壮性。
实现这类功能时,开发者通常会面临几个技术挑战:网站可能使用动态加载内容、反爬虫机制,或者复杂的HTML结构。recipe-scrapers项目通过模块化设计和良好的抽象,使得添加对新网站的支持变得相对简单。
对于想要贡献类似功能的开发者,建议先研究目标网站的页面结构,可以使用浏览器开发者工具分析DOM。然后参考项目中已有的解析器实现,保持代码风格一致。最后,务必添加充分的测试用例,确保功能的可靠性。
这个增强功能的实现展示了开源社区协作的力量,通过不断扩展支持的网站列表,recipe-scrapers项目为开发者提供了更强大的食谱数据获取能力,也为最终用户带来了更好的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00