jeb2frida 开源项目教程
项目介绍
jeb2frida 是一个基于 JEB(Java 反编译器)的脚本工具,旨在自动为 Android 应用程序生成 Frida 钩子代码。通过识别特定的“魔法字符串”(如 OkHttp 中的“Certificate pinning failure”),该工具能够智能定位相关类和方法,进一步依据预设签名匹配参数,最终自动生成 Frida 脚本来拦截和修改目标应用的行为。这一过程简化了传统的手动钩子设置流程,大大提高了研究人员的工作效率。
项目快速启动
安装和配置
-
克隆项目:
git clone https://github.com/Hamz-a/jeb2frida.git -
安装 JEB: 确保你已经安装了 JEB 反编译器,并将其配置到系统路径中。
-
放置脚本: 将
GenerateFridaHooks.py脚本放置到 JEB 的脚本文件夹中。
使用示例
-
编辑脚本: 根据需要编辑
GenerateFridaHooks.py脚本,配置魔法字符串和签名。 -
运行脚本: 在 JEB 中打开目标 APK 文件,然后运行脚本生成 Frida 钩子。
# 示例代码片段 # GenerateFridaHooks.py def generate_hooks(class_name, method_name): # 生成 Frida 钩子代码 hook_code = f""" Java.perform(function() {{ var {class_name} = Java.use('{class_name}'); {class_name}.{method_name}.implementation = function() {{ console.log('[*] {method_name} called'); return this.{method_name}.apply(this, arguments); }}; }}); """ return hook_code
应用案例和最佳实践
应用安全审计
jeb2frida 可以快速发现并测试潜在的安全漏洞,如证书绕过。通过自动生成 Frida 钩子,研究人员可以轻松拦截和修改应用的关键行为,从而进行深入的安全分析。
功能行为分析
无需深入阅读每一行 DEX 代码,jeb2frida 即可洞察应用核心功能的操作逻辑。这对于理解复杂应用的内部工作原理非常有用。
教育与培训
jeb2frida 为安全研究新手提供直观的学习案例,展示动态调试的魅力。通过实际操作,新手可以快速掌握移动应用安全分析的基本技能。
典型生态项目
JEB Decompiler
JEB 是一款强大的 Android 反编译器和代码分析工具,jeb2frida 正是基于 JEB 的强大反编译能力开发的。JEB 提供了丰富的 API 和脚本接口,使得 jeb2frida 能够高效地生成 Frida 钩子。
Frida
Frida 是一个动态代码注入工具,允许开发者在运行时修改和拦截应用的行为。jeb2frida 利用 Frida 的动态调试能力,为研究人员提供了一个强大的工具,用于自动化生成 Frida 钩子代码。
通过结合 JEB 和 Frida,jeb2frida 为移动应用安全分析提供了一个全面的解决方案,无论是初学者还是专业人士,都能从中受益。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00