jeb2frida 开源项目教程
项目介绍
jeb2frida 是一个基于 JEB(Java 反编译器)的脚本工具,旨在自动为 Android 应用程序生成 Frida 钩子代码。通过识别特定的“魔法字符串”(如 OkHttp 中的“Certificate pinning failure”),该工具能够智能定位相关类和方法,进一步依据预设签名匹配参数,最终自动生成 Frida 脚本来拦截和修改目标应用的行为。这一过程简化了传统的手动钩子设置流程,大大提高了研究人员的工作效率。
项目快速启动
安装和配置
-
克隆项目:
git clone https://github.com/Hamz-a/jeb2frida.git
-
安装 JEB: 确保你已经安装了 JEB 反编译器,并将其配置到系统路径中。
-
放置脚本: 将
GenerateFridaHooks.py
脚本放置到 JEB 的脚本文件夹中。
使用示例
-
编辑脚本: 根据需要编辑
GenerateFridaHooks.py
脚本,配置魔法字符串和签名。 -
运行脚本: 在 JEB 中打开目标 APK 文件,然后运行脚本生成 Frida 钩子。
# 示例代码片段 # GenerateFridaHooks.py def generate_hooks(class_name, method_name): # 生成 Frida 钩子代码 hook_code = f""" Java.perform(function() {{ var {class_name} = Java.use('{class_name}'); {class_name}.{method_name}.implementation = function() {{ console.log('[*] {method_name} called'); return this.{method_name}.apply(this, arguments); }}; }}); """ return hook_code
应用案例和最佳实践
应用安全审计
jeb2frida 可以快速发现并测试潜在的安全漏洞,如证书绕过。通过自动生成 Frida 钩子,研究人员可以轻松拦截和修改应用的关键行为,从而进行深入的安全分析。
功能行为分析
无需深入阅读每一行 DEX 代码,jeb2frida 即可洞察应用核心功能的操作逻辑。这对于理解复杂应用的内部工作原理非常有用。
教育与培训
jeb2frida 为安全研究新手提供直观的学习案例,展示动态调试的魅力。通过实际操作,新手可以快速掌握移动应用安全分析的基本技能。
典型生态项目
JEB Decompiler
JEB 是一款强大的 Android 反编译器和代码分析工具,jeb2frida 正是基于 JEB 的强大反编译能力开发的。JEB 提供了丰富的 API 和脚本接口,使得 jeb2frida 能够高效地生成 Frida 钩子。
Frida
Frida 是一个动态代码注入工具,允许开发者在运行时修改和拦截应用的行为。jeb2frida 利用 Frida 的动态调试能力,为研究人员提供了一个强大的工具,用于自动化生成 Frida 钩子代码。
通过结合 JEB 和 Frida,jeb2frida 为移动应用安全分析提供了一个全面的解决方案,无论是初学者还是专业人士,都能从中受益。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









