LMDeploy项目中InternVL2模型停止生成问题的技术分析
2025-06-04 06:42:37作者:齐冠琰
问题背景
在使用LMDeploy项目部署InternVL2_5-26B模型时,开发者遇到了一个典型的问题:模型在生成文本时无法按预期停止,持续输出重复内容。这种情况在大型语言模型应用中并不罕见,但需要深入分析其根本原因。
问题现象
当用户输入提示词"这张图片有红色物品吗?20个字左右"时,模型输出远超过20个字的回复,并且内容呈现明显的重复模式。从技术指标来看,模型生成了512个token后才因达到长度限制而停止(finish_reason='length'),而输入token数为2319。
根本原因分析
经过技术团队排查,发现该问题主要由两个配置不当引起:
-
聊天模板配置错误:用户使用了
ChatTemplateConfig(model_name="internvl2"),但"internvl2"并未在系统注册为有效的模板名称。这导致系统默认使用BaseChatTemplate,无法正确识别停止条件。 -
生成参数设置不当:虽然用户设置了
do_sample=True,但关键的停止条件参数(如max_new_tokens)未正确配置。此外,top_k参数被错误地直接传递给pipeline而非通过GenerationConfig设置。
解决方案
针对上述问题,技术团队建议采取以下措施:
-
正确配置聊天模板:
- 应使用系统已注册的模板名称
- 对于InternVL2模型,建议使用官方推荐的模板配置
-
优化生成参数:
gen_config = GenerationConfig( do_sample=True, top_k=50, # 显式设置top_k max_new_tokens=20 # 明确限制生成长度 )这样可确保模型输出严格控制在20个token左右。
性能优化建议
在实际测试中还发现,使用int4量化后:
- 显存占用从50+GB降至30GB
- 但性能优势不明显
技术团队表示将持续进行性能剖析(profile),以进一步优化量化效果。对于显存敏感的应用场景,即使性能提升有限,显存节省本身也很有价值。
总结
大型视觉语言模型的部署需要特别注意模板配置和生成参数设置。正确的配置不仅能解决生成控制问题,还能优化资源利用率。LMDeploy团队将持续改进模型支持,为开发者提供更稳定高效的部署体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217