LMDeploy项目中InternVL2模型停止生成问题的技术分析
2025-06-04 10:25:29作者:齐冠琰
问题背景
在使用LMDeploy项目部署InternVL2_5-26B模型时,开发者遇到了一个典型的问题:模型在生成文本时无法按预期停止,持续输出重复内容。这种情况在大型语言模型应用中并不罕见,但需要深入分析其根本原因。
问题现象
当用户输入提示词"这张图片有红色物品吗?20个字左右"时,模型输出远超过20个字的回复,并且内容呈现明显的重复模式。从技术指标来看,模型生成了512个token后才因达到长度限制而停止(finish_reason='length'),而输入token数为2319。
根本原因分析
经过技术团队排查,发现该问题主要由两个配置不当引起:
-
聊天模板配置错误:用户使用了
ChatTemplateConfig(model_name="internvl2"),但"internvl2"并未在系统注册为有效的模板名称。这导致系统默认使用BaseChatTemplate,无法正确识别停止条件。 -
生成参数设置不当:虽然用户设置了
do_sample=True,但关键的停止条件参数(如max_new_tokens)未正确配置。此外,top_k参数被错误地直接传递给pipeline而非通过GenerationConfig设置。
解决方案
针对上述问题,技术团队建议采取以下措施:
-
正确配置聊天模板:
- 应使用系统已注册的模板名称
- 对于InternVL2模型,建议使用官方推荐的模板配置
-
优化生成参数:
gen_config = GenerationConfig( do_sample=True, top_k=50, # 显式设置top_k max_new_tokens=20 # 明确限制生成长度 )这样可确保模型输出严格控制在20个token左右。
性能优化建议
在实际测试中还发现,使用int4量化后:
- 显存占用从50+GB降至30GB
- 但性能优势不明显
技术团队表示将持续进行性能剖析(profile),以进一步优化量化效果。对于显存敏感的应用场景,即使性能提升有限,显存节省本身也很有价值。
总结
大型视觉语言模型的部署需要特别注意模板配置和生成参数设置。正确的配置不仅能解决生成控制问题,还能优化资源利用率。LMDeploy团队将持续改进模型支持,为开发者提供更稳定高效的部署体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134