Jetty项目中的CompressionHandler压缩逻辑优化解析
Jetty作为一款高性能的Java Web服务器和Servlet容器,其压缩处理机制对网络传输效率有着重要影响。本文深入分析Jetty项目中CompressionHandler组件的压缩逻辑优化过程。
压缩配置的演进
Jetty团队对CompressionHandler的默认配置进行了重构。早期版本通过CompressionConfig.from(MimeTypes)方法创建默认配置,这种方式被认为过于临时且不够灵活。新版本采用了更规范的构建器模式,开发者可以通过CompressionConfig.builder()方法创建自定义配置,同时保留了合理的默认值。
HTTP方法支持策略
压缩处理与HTTP方法密切相关。优化后的CompressionHandler默认支持GET和POST方法,这与之前GzipHandler的行为保持一致。这种设计考虑到了Web应用的实际情况,因为绝大多数需要压缩的场景都集中在这两种HTTP方法上。开发者仍可通过compressMethods配置项自定义支持的方法列表。
内容编码提示机制
关于应用层是否能提示压缩算法的问题,Jetty团队经过深入讨论后保持了现有设计。当前实现严格遵循HTTP协议规范,主要依据客户端发送的Accept-Encoding头部来决定压缩算法。这种设计确保了协议兼容性,同时避免了与已有Content-Encoding头部的语义冲突。
压缩阈值考量
针对是否添加minCompressionSize配置项的讨论,团队决定保持现状。各压缩算法已内置合理的压缩阈值:gzip为32字节,zstd和brotli均为48字节。这些值经过实践验证,在压缩效率和性能开销之间取得了良好平衡,因此无需额外暴露配置。
ETag处理优化
ETag和304状态码的处理是压缩逻辑中的重要环节。优化后的实现确保在响应压缩内容时正确修改ETag值,同时妥善处理条件请求,避免压缩导致缓存失效问题。
这次优化使Jetty的压缩处理更加规范、灵活且符合HTTP协议标准,为开发者提供了更好的使用体验,同时保持了Jetty一贯的高性能特性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00