Cherry 项目启动与配置教程
2025-05-21 01:21:16作者:贡沫苏Truman
1. 项目目录结构及介绍
Cherry 是一个基于 PyTorch 的强化学习研究框架。其目录结构如下:
benchmarks/:包含性能基准测试相关的代码和脚本。cherry/:核心库代码,包括模块、工具和算法实现。docs/:项目文档,包括 API 文档和教程。examples/:示例代码,展示了如何使用 Cherry 框架实现不同的强化学习算法。tests/:单元测试和集成测试代码,确保库的稳定性和可靠性。.github/:GitHub 工作流和模板。.gitignore:定义了哪些文件和目录应该被 Git 忽略。CHANGELOG.md:记录了项目的更新和修改历史。LICENSE:项目的许可协议文件,Cherry 使用 Apache-2.0 许可。Makefile:构建和编译项目的配置文件。README.md:项目的主读我文件,包含了项目简介、安装指南和使用说明。requirements-dev.txt:开发环境所需的依赖包列表。requirements.txt:运行项目所需的依赖包列表。setup.cfg:项目打包和安装的配置文件。setup.py:项目打包和安装的脚本。
2. 项目的启动文件介绍
Cherry 项目的启动通常是通过 Python 脚本实现的。在 examples/ 目录下,你可以找到多个示例脚本,例如 example_script.py。以下是一个简单的启动脚本示例:
# example_script.py
import cherry
# 初始化环境、策略和其他必要组件
env = ... # 创建环境实例
policy = ... # 创建策略实例
# 运行策略并在环境中进行交互
for episode in range(number_of_episodes):
state = env.reset()
done = False
while not done:
action = policy act(state)
next_state, reward, done, info = env.step(action)
# 处理状态转移和奖励
state = next_state
你需要根据自己的需求,替换上述脚本中的环境、策略和其他组件。
3. 项目的配置文件介绍
Cherry 项目的配置主要通过 Python 的 configparser 模块或其他类似机制来实现。配置文件通常位于项目的根目录或特定的配置目录下。以下是一个配置文件的示例:
# config.ini
[Environment]
width = 84
height = 84
frame_skip = 4
[Policy]
hidden_size = 256
learning_rate = 0.001
[ReplayBuffer]
capacity = 1000000
batch_size = 32
在代码中,你可以使用以下方式加载和读取这些配置:
import configparser
# 创建配置解析器实例
config = configparser.ConfigParser()
# 读取配置文件
config.read('config.ini')
# 获取配置值
env_width = config.getint('Environment', 'width')
policy_hidden_size = config.getint('Policy', 'hidden_size')
通过修改 config.ini 文件,你可以轻松地调整项目参数,而无需直接修改代码。这样可以使得项目的配置更加灵活和可维护。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
311
2.72 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
242
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
469
Ascend Extension for PyTorch
Python
149
175
暂无简介
Dart
604
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
227
81
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
363
2.99 K
React Native鸿蒙化仓库
JavaScript
236
310