DeepLabCut中Transformer re-ID训练中的np.nanmean函数问题分析
2025-06-09 13:17:08作者:柏廷章Berta
问题背景
在DeepLabCut项目的PyTorch引擎中,当使用Transformer进行re-ID(重识别)训练时,发现了一个关键函数query_feature_by_coord_in_img_space()存在潜在问题。该函数用于在图像空间中通过坐标匹配特征,是创建训练三元组(triplets)的重要环节。
问题现象
原始代码中使用了np.nanmean来计算坐标差异的平均值,然后通过np.argmin寻找最小差异的索引。但在实际运行中,当存在全NaN的切片时,np.nanmean会产生警告并返回NaN值,导致np.argmin错误地选择了第一个NaN值对应的索引,而非真正的最小差异索引。
技术细节分析
-
输入数据结构:
coordinates:形状为(10,9,2)的数组,表示10个动物每个有9个关键点的坐标ref_coord:形状为(9,2)的数组,表示参考坐标
-
问题重现:
- 计算坐标差异时,大量值被设置为NaN
- 当某个动物的所有坐标差异都为NaN时,
np.nanmean无法计算有效均值 np.argmin遇到NaN时会错误地选择第一个NaN位置
-
影响范围:
- 导致特征匹配错误
- 进而影响三元组数据的质量
- 最终导致re-ID模型的训练准确率仅能达到50-60%
解决方案
使用np.ma.masked_invalid包装np.nanmean的结果,可以正确处理全NaN的情况:
def query_feature_by_coord_in_img_space(feature_dict, frame_id, ref_coord):
features = feature_dict[frame_id]["features"]
coordinates = feature_dict[frame_id]["coordinates"]
diff = coordinates - ref_coord
diff[np.where(np.logical_or(diff > 9000, diff < 0))] = np.nan
masked_means = np.ma.masked_invalid(np.nanmean(diff, axis=(1, 2)))
match_id = np.argmin(masked_means)
return features[match_id]
修复效果
修复后,Transformer re-ID模型的训练效果显著提升:
-
小规模训练集(1000个三元组):
- 训练准确率从~65%提升至97-98%
- 测试准确率从~55%提升至96%
-
大规模训练集(10000个三元组):
- 训练准确率达到100%
- 测试准确率同样达到100%
技术启示
- 在处理包含NaN值的数组运算时,需要特别注意全NaN切片的情况
- NumPy的masked数组提供了更安全的NaN处理机制
- 特征匹配算法的准确性对后续模型训练有决定性影响
- 在计算机视觉任务中,数据预处理环节的微小错误可能导致模型性能的显著下降
这个问题展示了在深度学习流程中,即使是很小的数值处理细节,也可能对最终模型性能产生重大影响。开发者在实现类似功能时,应当特别注意边缘情况和异常值的处理。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250