DeepLabCut中Transformer re-ID训练中的np.nanmean函数问题分析
2025-06-09 21:54:51作者:柏廷章Berta
问题背景
在DeepLabCut项目的PyTorch引擎中,当使用Transformer进行re-ID(重识别)训练时,发现了一个关键函数query_feature_by_coord_in_img_space()存在潜在问题。该函数用于在图像空间中通过坐标匹配特征,是创建训练三元组(triplets)的重要环节。
问题现象
原始代码中使用了np.nanmean来计算坐标差异的平均值,然后通过np.argmin寻找最小差异的索引。但在实际运行中,当存在全NaN的切片时,np.nanmean会产生警告并返回NaN值,导致np.argmin错误地选择了第一个NaN值对应的索引,而非真正的最小差异索引。
技术细节分析
-
输入数据结构:
coordinates:形状为(10,9,2)的数组,表示10个动物每个有9个关键点的坐标ref_coord:形状为(9,2)的数组,表示参考坐标
-
问题重现:
- 计算坐标差异时,大量值被设置为NaN
- 当某个动物的所有坐标差异都为NaN时,
np.nanmean无法计算有效均值 np.argmin遇到NaN时会错误地选择第一个NaN位置
-
影响范围:
- 导致特征匹配错误
- 进而影响三元组数据的质量
- 最终导致re-ID模型的训练准确率仅能达到50-60%
解决方案
使用np.ma.masked_invalid包装np.nanmean的结果,可以正确处理全NaN的情况:
def query_feature_by_coord_in_img_space(feature_dict, frame_id, ref_coord):
features = feature_dict[frame_id]["features"]
coordinates = feature_dict[frame_id]["coordinates"]
diff = coordinates - ref_coord
diff[np.where(np.logical_or(diff > 9000, diff < 0))] = np.nan
masked_means = np.ma.masked_invalid(np.nanmean(diff, axis=(1, 2)))
match_id = np.argmin(masked_means)
return features[match_id]
修复效果
修复后,Transformer re-ID模型的训练效果显著提升:
-
小规模训练集(1000个三元组):
- 训练准确率从~65%提升至97-98%
- 测试准确率从~55%提升至96%
-
大规模训练集(10000个三元组):
- 训练准确率达到100%
- 测试准确率同样达到100%
技术启示
- 在处理包含NaN值的数组运算时,需要特别注意全NaN切片的情况
- NumPy的masked数组提供了更安全的NaN处理机制
- 特征匹配算法的准确性对后续模型训练有决定性影响
- 在计算机视觉任务中,数据预处理环节的微小错误可能导致模型性能的显著下降
这个问题展示了在深度学习流程中,即使是很小的数值处理细节,也可能对最终模型性能产生重大影响。开发者在实现类似功能时,应当特别注意边缘情况和异常值的处理。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25