Arkime 5.6.0版本发布:网络流量分析工具的重大更新
Arkime是一款开源的网络流量分析工具,它能够捕获、索引和存储网络流量数据,并提供强大的搜索和分析功能。作为Moloch项目的继任者,Arkime在保留原有功能的基础上进行了多项改进和优化。最新发布的5.6.0版本带来了一系列新特性和改进,本文将详细介绍这些更新内容。
环境变量支持的增强
Arkime 5.6.0在环境变量支持方面做了重要改进。现在,配置变量可以使用ARKIME_default__前缀的环境变量来设置,这为容器化部署和自动化配置提供了更大的灵活性。此外,环境变量中的特殊字符(如DASH、COLON、DOT和SLASH)现在会被自动替换,这使得在复杂环境中使用环境变量配置Arkime变得更加方便。
捕获功能的改进
新版本在数据包捕获方面有几个值得关注的改进:
-
新增packet-stats命令:这个新命令提供了关于数据包捕获统计信息的详细视图,帮助管理员更好地监控捕获性能。
-
优化索引刷新机制:Arkime现在只在退出时刷新Elasticsearch索引,而不是在运行时频繁刷新,这显著提高了性能并减少了系统负载。
-
Suricata VLAN支持:当使用sessionIdTracking功能时,Arkime现在能够正确处理Suricata提供的VLAN信息,提高了网络流量分析的准确性。
-
新增命令行选项:引入了新的
--command选项,简化了命令执行方式,不再需要显式指定命令套接字。
规则引擎的增强
Arkime 5.6.0对规则引擎进行了多项改进:
-
新增_flipSrcDst动作:这个新动作允许规则在匹配时交换源和目的地址,为流量分析提供了更多灵活性。
-
新增tcp.synSet字段:现在可以在规则中使用这个新字段来匹配TCP SYN标志设置情况。
-
配置变量引用:规则现在支持使用
${configvar}语法引用配置变量的值,这使得规则编写更加动态和灵活。 -
更严格的配置检查:Arkime现在会对以
tpacketv3或simple开头的未知配置变量报错,帮助用户及早发现配置问题。
查看器改进
在用户界面方面,5.6.0版本也做了多项改进:
-
修复网络部分显示问题:解决了当session.network部分缺失时导致的错误问题。
-
主题设置持久化:修复了自定义主题设置丢失的问题,确保用户偏好能够被正确保存。
-
Elasticsearch节点信息展示:现在可以正确显示所有类型的数据节点信息,提供更全面的集群状态视图。
-
捕获统计页面修复:修正了Overload Drops/s统计数据显示不正确的问题。
安装与兼容性
Arkime 5.6.0提供了针对多种Linux发行版的预编译包,包括Amazon Linux 2023、RHEL/CentOS 7/8/9、Debian 12以及Ubuntu 20.04/22.04/24.04等。需要注意的是,从5.1.2或更早版本升级时需要进行数据库升级(db.pl upgrade)。
总结
Arkime 5.6.0版本在网络流量捕获、规则处理和用户界面等方面都带来了显著的改进。新版本增强了环境变量支持,优化了性能,并提供了更多灵活的规则处理选项。这些改进使得Arkime在网络流量分析和安全监控方面变得更加强大和易用。对于现有用户来说,升级到这个版本可以获得更好的性能和更多的功能选项;对于新用户来说,5.6.0版本提供了更完善的入门体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00