Facette 项目技术文档
1. 安装指南
Facette 是一个开源的 Web 应用程序,用于显示来自各种数据源(如 collectd、Graphite、InfluxDB 或 KairosDB)的时间序列数据。以下是 Facette 的安装指南。
1.1 构建与安装
请参考 INSTALL.md 文件中的详细构建说明和安装步骤。该文件包含了从源代码构建 Facette 的完整指南,包括依赖项的安装、编译过程以及最终的安装步骤。
1.2 依赖项
在开始安装之前,确保系统中已安装以下依赖项:
- Go 编程语言环境
- 其他必要的系统工具和库
1.3 安装步骤
-
克隆项目仓库:
git clone https://github.com/facette/facette.git cd facette -
按照
INSTALL.md文件中的说明进行构建和安装。
2. 项目使用说明
Facette 的主要功能是可视化时间序列数据。用户可以通过 Web 界面查看来自不同数据源的图表。以下是 Facette 的基本使用说明。
2.1 启动 Facette
安装完成后,可以通过以下命令启动 Facette:
facette
默认情况下,Facette 会在 http://localhost:12003 上运行。用户可以通过浏览器访问该地址,进入 Facette 的 Web 界面。
2.2 配置数据源
Facette 支持多种数据源,如 collectd、Graphite、InfluxDB 和 KairosDB。用户需要在 Facette 的配置文件中指定数据源的连接信息。配置文件通常位于 /etc/facette/facette.json。
2.3 创建图表
在 Facette 的 Web 界面中,用户可以创建新的图表,选择数据源和时间序列数据,并进行可视化展示。Facette 提供了丰富的图表类型和配置选项,用户可以根据需求自定义图表。
3. 项目 API 使用文档
Facette 提供了 RESTful API,允许用户通过编程方式与 Facette 进行交互。以下是 Facette API 的基本使用说明。
3.1 API 端点
Facette 的 API 端点通常位于 http://localhost:12003/api/。以下是一些常用的 API 端点:
GET /api/providers:获取所有数据源的列表。GET /api/collections:获取所有图表集合的列表。POST /api/collections:创建新的图表集合。
3.2 示例请求
以下是一个获取所有数据源列表的示例请求:
curl -X GET http://localhost:12003/api/providers
3.3 响应格式
Facette API 的响应格式为 JSON。例如,获取数据源列表的响应可能如下:
[
{
"name": "collectd",
"type": "collectd"
},
{
"name": "graphite",
"type": "graphite"
}
]
4. 项目安装方式
Facette 可以通过多种方式进行安装,以下是几种常见的安装方式。
4.1 从源代码安装
如前所述,用户可以通过克隆 GitHub 仓库并按照 INSTALL.md 文件中的说明进行安装。
4.2 使用包管理器安装
某些操作系统可能提供了 Facette 的包管理器安装方式。例如,在 Debian 或 Ubuntu 系统中,可以使用 apt-get 命令进行安装:
sudo apt-get install facette
4.3 使用 Docker 安装
Facette 也提供了 Docker 镜像,用户可以通过 Docker 快速部署 Facette:
docker pull facette/facette
docker run -p 12003:12003 facette/facette
通过以上步骤,用户可以顺利安装并使用 Facette 项目,进行时间序列数据的可视化展示。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00