Facette 项目技术文档
1. 安装指南
Facette 是一个开源的 Web 应用程序,用于显示来自各种数据源(如 collectd、Graphite、InfluxDB 或 KairosDB)的时间序列数据。以下是 Facette 的安装指南。
1.1 构建与安装
请参考 INSTALL.md 文件中的详细构建说明和安装步骤。该文件包含了从源代码构建 Facette 的完整指南,包括依赖项的安装、编译过程以及最终的安装步骤。
1.2 依赖项
在开始安装之前,确保系统中已安装以下依赖项:
- Go 编程语言环境
- 其他必要的系统工具和库
1.3 安装步骤
-
克隆项目仓库:
git clone https://github.com/facette/facette.git cd facette -
按照
INSTALL.md文件中的说明进行构建和安装。
2. 项目使用说明
Facette 的主要功能是可视化时间序列数据。用户可以通过 Web 界面查看来自不同数据源的图表。以下是 Facette 的基本使用说明。
2.1 启动 Facette
安装完成后,可以通过以下命令启动 Facette:
facette
默认情况下,Facette 会在 http://localhost:12003 上运行。用户可以通过浏览器访问该地址,进入 Facette 的 Web 界面。
2.2 配置数据源
Facette 支持多种数据源,如 collectd、Graphite、InfluxDB 和 KairosDB。用户需要在 Facette 的配置文件中指定数据源的连接信息。配置文件通常位于 /etc/facette/facette.json。
2.3 创建图表
在 Facette 的 Web 界面中,用户可以创建新的图表,选择数据源和时间序列数据,并进行可视化展示。Facette 提供了丰富的图表类型和配置选项,用户可以根据需求自定义图表。
3. 项目 API 使用文档
Facette 提供了 RESTful API,允许用户通过编程方式与 Facette 进行交互。以下是 Facette API 的基本使用说明。
3.1 API 端点
Facette 的 API 端点通常位于 http://localhost:12003/api/。以下是一些常用的 API 端点:
GET /api/providers:获取所有数据源的列表。GET /api/collections:获取所有图表集合的列表。POST /api/collections:创建新的图表集合。
3.2 示例请求
以下是一个获取所有数据源列表的示例请求:
curl -X GET http://localhost:12003/api/providers
3.3 响应格式
Facette API 的响应格式为 JSON。例如,获取数据源列表的响应可能如下:
[
{
"name": "collectd",
"type": "collectd"
},
{
"name": "graphite",
"type": "graphite"
}
]
4. 项目安装方式
Facette 可以通过多种方式进行安装,以下是几种常见的安装方式。
4.1 从源代码安装
如前所述,用户可以通过克隆 GitHub 仓库并按照 INSTALL.md 文件中的说明进行安装。
4.2 使用包管理器安装
某些操作系统可能提供了 Facette 的包管理器安装方式。例如,在 Debian 或 Ubuntu 系统中,可以使用 apt-get 命令进行安装:
sudo apt-get install facette
4.3 使用 Docker 安装
Facette 也提供了 Docker 镜像,用户可以通过 Docker 快速部署 Facette:
docker pull facette/facette
docker run -p 12003:12003 facette/facette
通过以上步骤,用户可以顺利安装并使用 Facette 项目,进行时间序列数据的可视化展示。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00