TensorFlow Extended (TFX) 开源项目教程
2024-08-07 07:42:53作者:范靓好Udolf
1. 项目的目录结构及介绍
TensorFlow Extended (TFX) 是一个用于部署生产级机器学习管道的端到端平台。以下是 TFX 项目的主要目录结构及其介绍:
tfx/
├── examples/
├── tfx/
│ ├── components/
│ ├── orchestration/
│ ├── proto/
│ ├── types/
│ ├── utils/
│ └── __init__.py
├── setup.py
└── README.md
- examples/: 包含 TFX 的示例代码和教程。
- tfx/: 核心代码目录,包含 TFX 的各种组件和工具。
- components/: 包含 TFX 的各种组件,如数据验证、特征工程、模型训练等。
- orchestration/: 包含 TFX 的管道编排代码,支持 Apache Airflow 和 Kubeflow Pipelines。
- proto/: 包含 TFX 使用的协议缓冲区定义。
- types/: 包含 TFX 使用的各种类型定义。
- utils/: 包含 TFX 的实用工具函数。
- init.py: 初始化文件,使
tfx
目录成为一个 Python 包。
- setup.py: 用于安装 TFX 的配置文件。
- README.md: 项目介绍和使用说明。
2. 项目的启动文件介绍
TFX 项目的启动文件通常是 tfx/orchestration/pipeline.py
,该文件定义了如何创建和运行一个 TFX 管道。以下是该文件的主要内容和功能介绍:
from tfx.orchestration import pipeline
from tfx.components import ExampleGen, Trainer, Evaluator, Pusher
def create_pipeline(
pipeline_name: str,
pipeline_root: str,
data_path: str,
module_file: str,
serving_model_dir: str,
metadata_connection_config: Optional[metadata.ConnectionConfigType] = None,
) -> pipeline.Pipeline:
"""Creates a TFX pipeline."""
# 定义数据输入组件
example_gen = ExampleGen(input_base=data_path)
# 定义训练组件
trainer = Trainer(
module_file=module_file,
examples=example_gen.outputs['examples'],
train_args=trainer_pb2.TrainArgs(num_steps=1000),
eval_args=trainer_pb2.EvalArgs(num_steps=500))
# 定义评估组件
evaluator = Evaluator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'],
eval_config=eval_config)
# 定义模型推送组件
pusher = Pusher(
model=trainer.outputs['model'],
push_destination=pusher_pb2.PushDestination(
filesystem=pusher_pb2.PushDestination.Filesystem(
base_directory=serving_model_dir)))
return pipeline.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
components=[example_gen, trainer, evaluator, pusher],
metadata_connection_config=metadata_connection_config)
该文件定义了一个典型的 TFX 管道,包括数据输入、模型训练、模型评估和模型推送等组件。
3. 项目的配置文件介绍
TFX 项目的配置文件主要是 setup.py
,该文件用于安装 TFX 及其依赖项。以下是该文件的主要内容和功能介绍:
from setuptools import find_packages, setup
# 读取 requirements.txt 文件
with open('requirements.txt') as f:
requirements = f.read().splitlines()
setup(
name='tfx',
version='1.0.0',
description='TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines',
author='Google Inc.',
author_email='packages@tensorflow.org',
url='https://www.tensorflow.org/tfx',
packages=find_packages(),
install_requires=requirements,
classifiers=[
'Development Status ::
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4