whisper.cpp项目在FreeBSD系统下的CPU特性检测问题分析
2025-05-02 02:53:33作者:农烁颖Land
问题背景
whisper.cpp项目在从传统的gmake构建系统迁移到cmake构建系统后,在FreeBSD 13.3-RELEASE系统上出现了一个关于CPU特性检测的问题。使用旧版gmake构建的可执行文件能够正确识别AVX、AVX2、FMA等CPU指令集支持,而使用新版cmake构建的可执行文件则无法检测到这些CPU特性。
问题表现对比
通过对比两个不同构建系统生成的程序输出,可以明显看到差异:
-
gmake构建版本:
system_info: n_threads = 7 / 8 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | COREML = 0 | OPENVINO = 0 | -
cmake构建版本:
system_info: n_threads = 7 / 8 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 0 | ARM_FMA = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 0 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | COREML = 0 | OPENVINO = 0 |
问题根源分析
通过深入分析构建过程和代码,发现问题出在ggml/src/ggml-cpu/CMakeLists.txt文件中。该文件负责检测CPU架构和特性,但在FreeBSD系统下,对于x86_64架构的检测逻辑存在缺陷。
具体来说,在检测系统处理器类型时,cmake脚本只匹配了"x86_64"、"i686"和"AMD64"三种字符串形式,而FreeBSD系统报告的处理器类型为小写的"amd64",导致检测失败。
解决方案
修复方法很简单,只需在处理器类型匹配模式中加入小写的"amd64"即可。具体修改如下:
diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt
index bc326c0..7675e11 100644
--- a/ggml/src/ggml-cpu/CMakeLists.txt
+++ b/ggml/src/ggml-cpu/CMakeLists.txt
@@ -175,7 +175,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endif()
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
- CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
+ CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
if (MSVC)
# instruction set detection for MSVC only
if (GGML_NATIVE)
技术影响
这个问题的解决对于在FreeBSD系统上使用whisper.cpp项目的用户至关重要。正确检测CPU特性可以:
- 充分利用CPU的SIMD指令集加速计算
- 显著提高语音识别和处理的性能
- 避免因错误检测导致的性能下降
总结
这个案例展示了跨平台软件开发中常见的一个问题:不同操作系统对相同硬件架构可能有不同的命名约定。开发者在编写构建系统时,需要考虑到各种操作系统可能返回的不同字符串形式,以确保功能在所有目标平台上都能正常工作。
对于FreeBSD用户来说,应用这个补丁后,whisper.cpp将能够正确检测并利用CPU的高级指令集,获得与Linux和Windows系统相当的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146