CoreMLTools 8.2版本发布:全面提升PyTorch模型转换能力与性能优化
项目简介
CoreMLTools是苹果公司推出的一个开源工具库,主要用于将各种机器学习框架训练好的模型转换为苹果生态系统支持的Core ML模型格式。这个工具对于希望在iOS、macOS等苹果设备上部署机器学习模型的开发者来说至关重要。通过CoreMLTools,开发者可以轻松地将TensorFlow、PyTorch等主流框架训练的模型转换为苹果设备原生支持的格式,从而获得更好的性能和能效表现。
版本亮点
1. 增强的PyTorch模型转换支持
在8.2版本中,CoreMLTools显著提升了对于torch.export生成模型的转换支持:
-
操作符覆盖率达到83%:新版本已经支持了绝大多数常见的PyTorch操作符,这意味着开发者现在可以将更多类型的PyTorch模型转换为Core ML格式。这个覆盖率已经接近成熟的torch.jit.trace转换器的水平。
-
新增模型支持:特别值得一提的是,现在可以成功转换torchaudio的wav2vec模型。wav2vec是一种流行的语音处理模型,广泛应用于语音识别、语音合成等领域。这一支持为语音相关的移动应用开发提供了新的可能性。
2. 性能优化:注意力机制改进
新版本引入了一个名为"common::scaled_dot_product_attention_sliced_q"的transformers图处理通道,专门优化了长序列情况下的scaled dot-product attention(SDPA)计算性能:
-
实测性能提升:以Depth-Anything模型为例,当序列长度达到1814时,经过优化的模型在苹果神经引擎(ANE)上运行速度提升了34%,同时内存使用量减少了45%。这对于处理长文本或高分辨率图像的模型特别有价值。
-
技术原理:这种优化主要通过将大的注意力矩阵计算分解为更小的切片来实现,既减少了内存压力,又提高了计算效率。这种技术在处理自然语言处理(NLP)或计算机视觉(CV)中的长序列任务时尤其有效。
3. 新增支持的操作符
8.2版本扩展了对PyTorch操作符的支持范围:
-
native_group_norm:这是一种分组归一化操作,在某些特定的神经网络架构中被广泛使用,特别是在图像生成和风格转换模型中。
-
bool类型的triu:支持布尔类型的上三角矩阵操作,这在某些特定的掩码操作或注意力机制中很有用。
4. 重要错误修复
-
torch.linspace行为修正:修复了之前版本中torch.linspace操作的不正确行为,确保生成的线性间隔数值序列更加准确。
-
power 2 - sqrt融合问题:修正了当power操作的指数是张量时,错误的power 2与sqrt融合问题。这种融合优化在之前的版本中可能导致计算结果不准确。
技术影响与开发者价值
CoreMLTools 8.2版本的这些改进对于移动端和边缘设备上的机器学习应用开发具有重要意义:
-
模型兼容性提升:更高的操作符覆盖率意味着开发者可以转换更多类型的PyTorch模型,减少了模型移植过程中的障碍。
-
性能优化:特别是对注意力机制的优化,使得在资源受限的设备上运行大型transformer模型成为可能,为移动端的NLP和CV应用开辟了新的可能性。
-
社区贡献:这个版本特别感谢了开源社区的贡献者,体现了苹果对开源生态的重视和支持。
升级建议
对于已经在使用CoreMLTools的开发者,建议尽快升级到8.2版本,特别是:
- 正在使用PyTorch模型并希望部署到苹果设备的开发者
- 需要处理长序列任务的NLP或CV应用开发者
- 使用wav2vec等语音模型的开发者
新版本不仅提供了更好的兼容性,还能带来显著的性能提升和内存优化,这对于移动端应用尤为重要。
未来展望
随着PyTorch 2.0的普及和torch.export成为标准导出方式,CoreMLTools对torch.export的支持将持续增强。开发者可以期待未来版本中更完整的操作符覆盖率和更智能的优化策略,使得在苹果设备上部署复杂的机器学习模型变得更加简单高效。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00