探索未来游戏:MCTS-TD Tetris - 以AlphaGo为灵感的AI版俄罗斯方块
在这个数字化时代,我们不断挑战着智能系统的边界。其中,以经典游戏俄罗斯方块为例,用人工智能来展示智能学习的力量是极具吸引力的尝试。本文将向您推荐一个特别的开源项目——由Monte Carlo Tree Search(MCTS)和Temporal Difference Learning(TD)驱动的智能代理,它能够学习并掌握玩转俄罗斯方块的技巧。
项目介绍
这个项目源自对俄罗斯方块的热爱与对强化学习的兴趣。开发者试图应用深度Q学习来训练一个智能体,但发现这种方法在处理像俄罗斯方块这样奖励稀疏且长期依赖的游戏时效果不佳。因此,他们转向了AlphaGo的启发式搜索方法,结合了MCTS和TD学习,创建了一个专门针对俄罗斯方块的MCTS-TD代理。

项目技术分析
本项目的核心在于利用蒙特卡洛树搜索进行策略选择,并通过时间差分学习更新策略网络。它采用了类似AlphaGo的方式,用神经网络预测状态的价值和下一步动作的可能性,然后基于这些信息计算上界信心值。此外,该项目还利用指数移动平均和方差,根据中心极限定理计算上界,这一改进对于单玩家游戏可能更加合适。
与传统的Tetris机器人不同的是,这个项目不需要人为设计的奖励函数,而是直接从游戏环境中学习,具备更广泛的适用性。
应用场景
想象一下,一个无需预先设定规则、完全自主学习游戏策略的AI,在各种变种或更复杂的益智游戏中游刃有余。这个项目不仅适用于俄罗斯方块,还可以推广到其他满足特定条件的游戏环境,展示了智能系统自我学习和适应的能力。
要运行此项目,您需要安装相应的Python库以及这里提供的Tetris环境和pybind11库。
训练自己的AI只需要一条命令:
python play.py --agent_type ValueSimLP --online --ngames 1000 --mcts_sims 100
项目特点
- 无须人工奖励函数:智能体通过游戏环境自我学习,而不是依赖于手工定义的奖励系统。
- 灵感源自AlphaGo:结合了MCTS和神经网络,提高了决策效率和策略质量。
- 适应性强:可以应用于符合特定条件的多个游戏环境。
- 持续进化:随着训练的进行,智能体的性能不断提升,展现出强大的学习和优化能力。
进度与成果
项目经过多次迭代,性能不断优化。如视频所示,AI在数千次模拟后,已经能实现相当高水准的游玩。随着更多资源的投入,其表现还有望进一步提升。

可以看到,无论是训练还是基准测试,智能体都能稳定地提高得分和清除行数。
结语
MCTS-TD Tetris项目不仅是对人工智能在游戏领域应用的一次独特探索,也是对强化学习和策略优化的生动实践。无论你是对机器学习感兴趣,还是热衷于游戏开发,这个项目都值得你一试。立即加入,见证AI如何在游戏中大展拳脚!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00