探索未来游戏:MCTS-TD Tetris - 以AlphaGo为灵感的AI版俄罗斯方块
在这个数字化时代,我们不断挑战着智能系统的边界。其中,以经典游戏俄罗斯方块为例,用人工智能来展示智能学习的力量是极具吸引力的尝试。本文将向您推荐一个特别的开源项目——由Monte Carlo Tree Search(MCTS)和Temporal Difference Learning(TD)驱动的智能代理,它能够学习并掌握玩转俄罗斯方块的技巧。
项目介绍
这个项目源自对俄罗斯方块的热爱与对强化学习的兴趣。开发者试图应用深度Q学习来训练一个智能体,但发现这种方法在处理像俄罗斯方块这样奖励稀疏且长期依赖的游戏时效果不佳。因此,他们转向了AlphaGo的启发式搜索方法,结合了MCTS和TD学习,创建了一个专门针对俄罗斯方块的MCTS-TD代理。

项目技术分析
本项目的核心在于利用蒙特卡洛树搜索进行策略选择,并通过时间差分学习更新策略网络。它采用了类似AlphaGo的方式,用神经网络预测状态的价值和下一步动作的可能性,然后基于这些信息计算上界信心值。此外,该项目还利用指数移动平均和方差,根据中心极限定理计算上界,这一改进对于单玩家游戏可能更加合适。
与传统的Tetris机器人不同的是,这个项目不需要人为设计的奖励函数,而是直接从游戏环境中学习,具备更广泛的适用性。
应用场景
想象一下,一个无需预先设定规则、完全自主学习游戏策略的AI,在各种变种或更复杂的益智游戏中游刃有余。这个项目不仅适用于俄罗斯方块,还可以推广到其他满足特定条件的游戏环境,展示了智能系统自我学习和适应的能力。
要运行此项目,您需要安装相应的Python库以及这里提供的Tetris环境和pybind11库。
训练自己的AI只需要一条命令:
python play.py --agent_type ValueSimLP --online --ngames 1000 --mcts_sims 100
项目特点
- 无须人工奖励函数:智能体通过游戏环境自我学习,而不是依赖于手工定义的奖励系统。
- 灵感源自AlphaGo:结合了MCTS和神经网络,提高了决策效率和策略质量。
- 适应性强:可以应用于符合特定条件的多个游戏环境。
- 持续进化:随着训练的进行,智能体的性能不断提升,展现出强大的学习和优化能力。
进度与成果
项目经过多次迭代,性能不断优化。如视频所示,AI在数千次模拟后,已经能实现相当高水准的游玩。随着更多资源的投入,其表现还有望进一步提升。

可以看到,无论是训练还是基准测试,智能体都能稳定地提高得分和清除行数。
结语
MCTS-TD Tetris项目不仅是对人工智能在游戏领域应用的一次独特探索,也是对强化学习和策略优化的生动实践。无论你是对机器学习感兴趣,还是热衷于游戏开发,这个项目都值得你一试。立即加入,见证AI如何在游戏中大展拳脚!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00