开源项目启动和配置教程
2025-05-18 07:45:00作者:伍霜盼Ellen
一、项目目录结构及介绍
开源项目 Gate-Shift Networks for Video Action Recognition 的目录结构如下:
GSM/
├── data_scripts/ # 数据预处理脚本
├── eval_scripts/ # 评估脚本
├── model_zoo/ # 预训练模型
├── ops/ # 自定义操作和工具
├── CosineAnnealingLR.py # 余弦退火学习率调整脚本
├── LICENSE # 许可证文件
├── README.md # 项目说明文件
├── average_scores.py # 计算平均分数的脚本
├── dataset.py # 数据集处理文件
├── datasets_video.py # 视频数据集处理文件
├── download_models.py # 下载预训练模型的脚本
├── gsm.py # Gate-Shift Networks 的实现文件
├── main.py # 主程序文件,用于训练和测试
├── models.py # 模型定义文件
├── opts.py # 参数配置文件
├── test_models.py # 测试模型的脚本
├── test_rgb.sh # 测试 RGB 模型的 shell 脚本
├── train_rgb.sh # 训练 RGB 模型的 shell 脚本
└── transforms.py # 数据增强和转换脚本
目录说明:
data_scripts/
: 包含用于处理不同数据集的脚本。eval_scripts/
: 包含评估模型性能的脚本。model_zoo/
: 存放预训练模型文件。ops/
: 包含一些自定义的操作和工具函数。CosineAnnealingLR.py
: 实现余弦退火学习率调整的 Python 脚本。LICENSE
: 项目的许可证文件。README.md
: 项目的说明文档。average_scores.py
: 用于计算模型平均分数的脚本。dataset.py
: 处理数据集的 Python 文件。datasets_video.py
: 处理视频数据集的 Python 文件。download_models.py
: 用于下载预训练模型的 Python 脚本。gsm.py
: Gate-Shift Networks 的核心实现文件。main.py
: 主程序文件,用于执行模型的训练和测试。models.py
: 定义各种模型的 Python 文件。opts.py
: 用于配置和解析命令行参数的文件。test_models.py
: 用于测试模型的 Python 脚本。test_rgb.sh
: 用于测试 RGB 模型的 shell 脚本。train_rgb.sh
: 用于训练 RGB 模型的 shell 脚本。transforms.py
: 包含数据增强和转换操作的 Python 文件。
二、项目的启动文件介绍
项目的主启动文件是 main.py
。该文件负责处理命令行参数,初始化模型,加载数据集,并执行训练或测试流程。
启动训练流程的基本命令如下:
python main.py <dataset_name> <modal> --arch <model_architecture> ...
其中 <dataset_name>
是数据集的名称,<modal>
是模态类型(例如 RGB),--arch
用于指定模型架构。
三、项目的配置文件介绍
项目的配置文件是 opts.py
。该文件定义了一个 parser
对象,用于解析命令行参数。这些参数包括数据集路径、模型配置、训练参数等。
以下是一些常见的配置选项:
--arch
: 指定使用的模型架构。--num_segments
: 视频切分成的段数。--consensus_type
: 一致性函数的类型,用于处理多段视频。--batch-size
: 每批次的样本数量。--epochs
: 训练的总轮数。--lr
: 学习率。--warmup
: 预热步骤的轮数。--eval-freq
: 评估频率,即每几轮进行一次评估。
用户可以通过命令行参数来调整这些配置,以适应不同的训练需求。例如:
python main.py something-v1 RGB --arch BNInception --num_segments 8 --consensus_type avg ...
以上就是开源项目 Gate-Shift Networks for Video Action Recognition 的启动和配置教程。通过阅读本教程,用户应该能够理解项目的目录结构,启动项目,并进行基本配置。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息09GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.96 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
431
34

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
251
9

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
989
394

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69