PythonRobotics项目中Frenet最优轨迹算法的扩展应用
在PythonRobotics这个优秀的开源机器人算法项目中,Frenet最优轨迹规划算法(Frenet Optimal Trajectory)是一个重要的组成部分。该算法最初实现时主要针对高速轨迹下的速度保持场景,但实际应用中还需要考虑更多复杂情况。
Frenet坐标系是一种基于参考路径的曲线坐标系,它将复杂的全局路径规划问题转化为相对简单的纵向(s)和横向(d)运动规划问题。这种坐标系特别适合处理道路跟随、变道等场景。
在原始实现基础上,我们可以对该算法进行功能扩展,使其能够支持更丰富的应用场景:
-
低速轨迹规划:与高速场景不同,低速情况下需要考虑更精细的加速度控制和更长的规划视野。需要调整代价函数中的速度项权重,并优化轨迹生成参数。
-
车辆跟随模式:在前车存在的情况下,算法需要加入安全距离约束和相对速度补偿。可以通过在代价函数中增加与前车距离相关的惩罚项来实现。
-
并线场景处理:并线时需要同时考虑目标车道和当前车道的车辆。这需要在轨迹采样时增加横向位移的多样性,并优化并线时机选择策略。
-
停车场景支持:对于需要完全停车的场景,算法需要优化减速曲线,确保平稳停车。可以引入终点速度为零的硬约束,并调整加速度限制。
这些扩展不仅需要修改轨迹生成部分的代码,还需要对代价函数进行相应调整。例如,在停车场景中,可以增加终点速度误差项的权重;在并线场景中,则需要加强横向位移平滑性的考量。
实现这些扩展后,Frenet最优轨迹算法将具备更全面的场景适应能力,能够处理从高速公路巡航到城市复杂路况等各类自动驾驶场景。这大大提升了算法在实际机器人系统中的应用价值。
对于想要深入理解轨迹规划算法的开发者来说,研究这些扩展实现是很好的学习机会。通过对比不同场景下的参数设置和约束条件,可以更深刻地理解最优轨迹规划的核心思想。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00