Garage 开源项目教程
2024-08-10 10:34:30作者:董宙帆
1. 项目目录结构及介绍
在garage项目中,目录结构通常会遵循以下模式:
garage/
├── docs/ # 文档和教程资料
├── gym/ # 与第三方Gym接口相关的代码
├── src/ # 主要的源代码库
│ ├── garage/ # 核心模块
│ │ ├── algorithms/ # 强化学习算法
│ │ ├── baselines/ # 基线模型
│ │ ├── benchmarks/ # 性能基准测试
│ │ ├── experiments/ # 实验框架
│ │ ├── samplers/ # 采样器
│ │ └── ... # 其他子模块
├── setup.py # 项目安装脚本
└── tests/ # 单元测试和集成测试
这个结构说明garage主要由以下几个部分组成:
docs: 包含项目的文档和教程。gym: 提供与第三方Gym环境的集成。src: 存放核心代码,包括各种强化学习算法实现、基线模型、性能基准测试、实验框架和采样器等。setup.py: 安装脚本,用于在Python环境中安装garage。tests: 测试代码,确保项目的正确性和稳定性。
2. 项目启动文件介绍
在garage项目中,启动一个示例通常会涉及运行源码中的某个特定脚本或命令行界面。由于garage是库的形式,通常不会有一个单一的"启动文件",而是通过导入库并在用户自己的代码中使用它来创建RL任务。例如,要训练一个简单的强化学习算法,你可以创建一个新的Python文件并引入所需的garage模块:
from garage.envs import gym_env
from garage.np.experiments import run_experiment
from garage.tf.algos import TRPO
from garage.tf.policies import GaussianMLPPolicy
def run_task(n_epochs):
env = gym_env('CartPole-v1') # 使用gym环境
policy = GaussianMLPPolicy(env.spec)
algo = TRPO(env.spec, policy=policy)
run_experiment(
lambda _: algo.train(),
n_epochs=n_epochs,
snapshot_mode='last',
use_gpu=False,
)
if __name__ == "__main__":
run_task(10)
在这个例子中,run_task函数定义了如何运行一个实验,run_experiment调用来执行训练循环。
3. 项目的配置文件介绍
garage项目本身并不强制要求使用单独的配置文件,但你可以选择使用Python字典或者其他配置管理库(如yaml或json文件)来存储和加载实验参数。例如,在你的实验脚本中,可以创建一个包含超参数的配置字典:
import yaml
with open('config.yaml', 'r') as f:
config = yaml.safe_load(f)
n_epochs = config['training']['epochs']
learning_rate = config['algorithm']['learning_rate']
# 然后将这些参数传递给你的训练函数
run_task(n_epochs, learning_rate=learning_rate)
在这个场景下,config.yaml文件可能包含如下内容:
training:
epochs: 50
algorithm:
learning_rate: 0.01
这样,你可以轻松地调整参数而无需修改代码。
请注意,实际的项目可能会有其他组织结构和配置方式,因此建议查阅项目仓库的README或其他文档以获取更具体的指导。在garage的案例中,可以查看官方文档以获得详细的使用指南和示例。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671