Garage 开源项目教程
2024-08-10 10:34:30作者:董宙帆
1. 项目目录结构及介绍
在garage项目中,目录结构通常会遵循以下模式:
garage/
├── docs/ # 文档和教程资料
├── gym/ # 与第三方Gym接口相关的代码
├── src/ # 主要的源代码库
│ ├── garage/ # 核心模块
│ │ ├── algorithms/ # 强化学习算法
│ │ ├── baselines/ # 基线模型
│ │ ├── benchmarks/ # 性能基准测试
│ │ ├── experiments/ # 实验框架
│ │ ├── samplers/ # 采样器
│ │ └── ... # 其他子模块
├── setup.py # 项目安装脚本
└── tests/ # 单元测试和集成测试
这个结构说明garage主要由以下几个部分组成:
docs: 包含项目的文档和教程。gym: 提供与第三方Gym环境的集成。src: 存放核心代码,包括各种强化学习算法实现、基线模型、性能基准测试、实验框架和采样器等。setup.py: 安装脚本,用于在Python环境中安装garage。tests: 测试代码,确保项目的正确性和稳定性。
2. 项目启动文件介绍
在garage项目中,启动一个示例通常会涉及运行源码中的某个特定脚本或命令行界面。由于garage是库的形式,通常不会有一个单一的"启动文件",而是通过导入库并在用户自己的代码中使用它来创建RL任务。例如,要训练一个简单的强化学习算法,你可以创建一个新的Python文件并引入所需的garage模块:
from garage.envs import gym_env
from garage.np.experiments import run_experiment
from garage.tf.algos import TRPO
from garage.tf.policies import GaussianMLPPolicy
def run_task(n_epochs):
env = gym_env('CartPole-v1') # 使用gym环境
policy = GaussianMLPPolicy(env.spec)
algo = TRPO(env.spec, policy=policy)
run_experiment(
lambda _: algo.train(),
n_epochs=n_epochs,
snapshot_mode='last',
use_gpu=False,
)
if __name__ == "__main__":
run_task(10)
在这个例子中,run_task函数定义了如何运行一个实验,run_experiment调用来执行训练循环。
3. 项目的配置文件介绍
garage项目本身并不强制要求使用单独的配置文件,但你可以选择使用Python字典或者其他配置管理库(如yaml或json文件)来存储和加载实验参数。例如,在你的实验脚本中,可以创建一个包含超参数的配置字典:
import yaml
with open('config.yaml', 'r') as f:
config = yaml.safe_load(f)
n_epochs = config['training']['epochs']
learning_rate = config['algorithm']['learning_rate']
# 然后将这些参数传递给你的训练函数
run_task(n_epochs, learning_rate=learning_rate)
在这个场景下,config.yaml文件可能包含如下内容:
training:
epochs: 50
algorithm:
learning_rate: 0.01
这样,你可以轻松地调整参数而无需修改代码。
请注意,实际的项目可能会有其他组织结构和配置方式,因此建议查阅项目仓库的README或其他文档以获取更具体的指导。在garage的案例中,可以查看官方文档以获得详细的使用指南和示例。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
208
220
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
287
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
215
仓颉编程语言运行时与标准库。
Cangjie
134
873