Garage 开源项目教程
2024-08-10 10:34:30作者:董宙帆
1. 项目目录结构及介绍
在garage
项目中,目录结构通常会遵循以下模式:
garage/
├── docs/ # 文档和教程资料
├── gym/ # 与第三方Gym接口相关的代码
├── src/ # 主要的源代码库
│ ├── garage/ # 核心模块
│ │ ├── algorithms/ # 强化学习算法
│ │ ├── baselines/ # 基线模型
│ │ ├── benchmarks/ # 性能基准测试
│ │ ├── experiments/ # 实验框架
│ │ ├── samplers/ # 采样器
│ │ └── ... # 其他子模块
├── setup.py # 项目安装脚本
└── tests/ # 单元测试和集成测试
这个结构说明garage
主要由以下几个部分组成:
docs
: 包含项目的文档和教程。gym
: 提供与第三方Gym环境的集成。src
: 存放核心代码,包括各种强化学习算法实现、基线模型、性能基准测试、实验框架和采样器等。setup.py
: 安装脚本,用于在Python环境中安装garage
。tests
: 测试代码,确保项目的正确性和稳定性。
2. 项目启动文件介绍
在garage
项目中,启动一个示例通常会涉及运行源码中的某个特定脚本或命令行界面。由于garage
是库的形式,通常不会有一个单一的"启动文件",而是通过导入库并在用户自己的代码中使用它来创建RL任务。例如,要训练一个简单的强化学习算法,你可以创建一个新的Python文件并引入所需的garage
模块:
from garage.envs import gym_env
from garage.np.experiments import run_experiment
from garage.tf.algos import TRPO
from garage.tf.policies import GaussianMLPPolicy
def run_task(n_epochs):
env = gym_env('CartPole-v1') # 使用gym环境
policy = GaussianMLPPolicy(env.spec)
algo = TRPO(env.spec, policy=policy)
run_experiment(
lambda _: algo.train(),
n_epochs=n_epochs,
snapshot_mode='last',
use_gpu=False,
)
if __name__ == "__main__":
run_task(10)
在这个例子中,run_task
函数定义了如何运行一个实验,run_experiment
调用来执行训练循环。
3. 项目的配置文件介绍
garage
项目本身并不强制要求使用单独的配置文件,但你可以选择使用Python字典或者其他配置管理库(如yaml
或json
文件)来存储和加载实验参数。例如,在你的实验脚本中,可以创建一个包含超参数的配置字典:
import yaml
with open('config.yaml', 'r') as f:
config = yaml.safe_load(f)
n_epochs = config['training']['epochs']
learning_rate = config['algorithm']['learning_rate']
# 然后将这些参数传递给你的训练函数
run_task(n_epochs, learning_rate=learning_rate)
在这个场景下,config.yaml
文件可能包含如下内容:
training:
epochs: 50
algorithm:
learning_rate: 0.01
这样,你可以轻松地调整参数而无需修改代码。
请注意,实际的项目可能会有其他组织结构和配置方式,因此建议查阅项目仓库的README或其他文档以获取更具体的指导。在garage
的案例中,可以查看官方文档以获得详细的使用指南和示例。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp音乐播放器项目中的函数调用问题解析9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
887
525

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
188

React Native鸿蒙化仓库
C++
182
265

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
368
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
737
105