RDKit中指纹生成器忽略手性问题的分析与解决
问题背景
在化学信息学领域,分子指纹是一种常用的分子表示方法,能够将复杂的分子结构转换为固定长度的二进制向量。RDKit作为一款广泛使用的开源化学信息学工具包,提供了多种指纹生成算法,其中Morgan指纹(又称圆形指纹)是最常用的一种。
在2025年5月,有开发者报告了一个关于RDKit指纹生成器的问题:当使用新的立体化学感知代码时,指纹生成器似乎忽略了分子的手性信息,即使明确设置了includeChirality=True参数,对映异构体生成的指纹仍然相同。
问题复现
通过以下代码可以复现该问题:
from rdkit import Chem
from rdkit.Chem import rdFingerprintGenerator
Chem.SetUseLegacyStereoPerception(False) # 使用新的立体化学感知代码
mfpgen = rdFingerprintGenerator.GetMorganGenerator(radius=2, fpSize=2048, includeChirality=True)
mol1 = Chem.MolFromSmiles('C[C@H](N)C(=O)O') # L-丙氨酸
mol2 = Chem.MolFromSmiles('C[C@@H](N)C(=O)O') # D-丙氨酸
print(mfpgen.GetFingerprint(mol1) == mfpgen.GetFingerprint(mol2)) # 输出True,预期应为False
问题分析
这个问题源于RDKit新旧立体化学感知系统的差异。在旧版系统中,立体化学信息会被明确标记在分子对象上,指纹生成器可以正确识别这些标记。而在新版立体化学感知系统中,这些标记的处理方式发生了变化,导致指纹生成器无法正确识别手性信息。
手性在药物设计中至关重要,因为对映异构体往往具有完全不同的生物活性。忽略手性会导致指纹无法区分重要的立体化学差异,从而影响后续的相似性搜索、虚拟筛选等应用的效果。
解决方案
RDKit开发团队在2025年3月发布的v2025.03.2版本中修复了这个问题。更新后的版本中,指纹生成器能够正确识别新版立体化学感知系统标记的手性信息,为对映异构体生成不同的指纹。
验证修复后的行为:
import rdkit
print(rdkit.__version__) # 2025.03.2或更高
# 其余代码同上
# 现在输出为False,表明指纹生成器能正确区分对映异构体
最佳实践建议
-
版本管理:确保使用RDKit 2025.03.2或更高版本,以获得正确的手性感知功能。
-
显式设置:在需要处理手性分子时,始终明确设置
includeChirality=True参数。 -
测试验证:对于关键应用,建议添加测试用例验证指纹生成器是否能正确区分对映异构体。
-
立体化学感知选择:根据项目需求选择使用新版或旧版立体化学感知系统,但需要注意一致性。
-
文档参考:查阅RDKit官方文档中关于指纹生成和立体化学处理的最新说明。
总结
分子指纹是化学信息学中的重要工具,正确处理手性信息对于许多应用场景至关重要。RDKit团队及时修复了新版立体化学感知系统中指纹生成器忽略手性的问题,确保了化学信息分析的准确性。开发者应当保持RDKit版本更新,并注意相关参数的设置,以获得最佳的分析结果。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00