Terragrunt离线环境下私有模块与Provider缓存配置指南
背景介绍
在企业级基础设施管理中,Terragrunt作为Terraform的包装工具,经常需要在离线环境(即所谓的"空气隔离"环境)中部署基础设施。这种环境通常存在于高度安全的内部网络中,无法直接访问公共互联网资源。本文将深入探讨如何在这种环境下正确配置Terragrunt的Provider缓存机制,特别是针对私有模块的使用场景。
核心问题分析
在离线环境中使用Terragrunt时,主要面临两个关键挑战:
- 
私有模块的缓存问题:当使用企业内部托管的私有Terraform模块时,即使已经手动将Provider安装到缓存目录,Terragrunt仍然会尝试从远程注册表查询版本信息。
 - 
Provider缓存机制失效:配置了
direct.exclude规则后,系统仍然会尝试连接远程注册表,导致在无网络连接的情况下操作失败。 
详细解决方案
环境变量配置
首先需要设置正确的环境变量来启用Terragrunt的Provider缓存功能:
export TERRAGRUNT_PROVIDER_CACHE="1"
export TERRAGRUNT_PROVIDER_CACHE_REGISTRY_NAMES="registry.terraform.io,terraform.example.com"
export TERRAGRUNT_PROVIDER_CACHE_HOST=127.0.0.1
export TERRAGRUNT_PROVIDER_CACHE_PORT=5758
这些变量告诉Terragrunt:
- 启用Provider缓存功能
 - 指定需要缓存的注册表域名
 - 设置缓存服务监听的地址和端口
 
Terraform配置文件优化
在~/.terraformrc文件中,需要配置Provider的安装策略:
plugin_cache_dir = "$HOME/.cache/terragrunt/providers"
disable_checkpoint = true
provider_installation {
  filesystem_mirror {
    path    = "/home/user/.cache/terragrunt/providers"
    include = ["terraform.example.com/*/*"]
  }
  direct {
    exclude = ["terraform.example.com/*/*"]
  }
}
这个配置实现了:
- 设置插件缓存目录
 - 禁用Terraform的自动更新检查
 - 定义文件系统镜像路径
 - 明确包含/排除特定的Provider来源
 
目录结构建议
为了管理清晰,建议采用以下目录结构:
- Terragrunt Provider缓存:
~/.cache/terragrunt/providers - Terraform默认插件目录:
~/.terraform.d/plugins 
这种分离的结构有助于区分Terragrunt专用缓存和Terraform默认的插件管理。
常见问题排查
版本查询失败问题
即使配置了正确的缓存机制,仍可能遇到版本查询失败的错误。这是因为:
- Terraform会默认尝试查询Provider的最新版本信息
 - 在离线环境中,这种查询会因网络不可达而失败
 
解决方案是确保:
disable_checkpoint = true设置正确- 所有必需的Provider已预先下载到缓存目录
 - 文件权限设置正确,确保Terragrunt可以读取缓存内容
 
私有模块的特殊处理
对于私有模块,需要特别注意:
- 模块路径必须与缓存目录结构匹配
 - 版本号需要明确指定,避免动态查询
 - 在
terragrunt.hcl中显式定义Provider版本 
最佳实践建议
- 
预先填充缓存:在有网络的环境中预先下载所有需要的Provider到缓存目录。
 - 
版本锁定:在代码中明确指定Provider版本,避免动态查询。
 - 
双重验证:同时检查Terragrunt和Terraform的日志,确认缓存机制是否按预期工作。
 - 
网络隔离测试:在实际离线环境部署前,通过在在线环境中模拟离线条件(如使用防火墙规则)进行测试。
 - 
文档记录:详细记录所有私有模块的缓存位置和版本信息,便于团队协作和后续维护。
 
通过以上配置和实践,可以在完全离线的环境中稳定使用Terragrunt管理基础设施,同时兼顾私有模块的安全性和公共模块的便利性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00