BayesianOptimization库中如何指定初始采样点
2025-05-28 17:18:22作者:鲍丁臣Ursa
在使用BayesianOptimization库进行贝叶斯优化时,初始采样点的选择对优化效果有着重要影响。默认情况下,库会随机选择初始点,但有时我们需要手动指定这些初始点以获得更好的优化效果。
初始采样点的重要性
贝叶斯优化是一种基于序列模型的优化方法,它通过构建目标函数的概率模型来指导搜索过程。初始采样点作为优化过程的起点,直接影响着高斯过程模型的初始拟合效果。合理的初始点选择可以:
- 加速收敛过程
- 避免陷入局部最优
- 提高模型对目标函数的理解
指定初始采样点的方法
BayesianOptimization库提供了probe()方法来实现手动指定初始点。具体使用方式如下:
from bayes_opt import BayesianOptimization
# 定义目标函数
def black_box_function(x):
return x**2
# 创建优化器实例
optimizer = BayesianOptimization(
f=black_box_function,
pbounds={"x": (-2, 2)},
verbose=2,
random_state=7,
)
# 手动指定初始点
optimizer.probe(0, lazy=True) # 第一个初始点x=0
optimizer.probe(1, lazy=True) # 第二个初始点x=1
# 开始优化过程,设置init_points=0避免额外随机采样
optimizer.maximize(
init_points=0,
n_iter=1,
)
关键参数说明
-
probe()方法:- 第一个参数是要探测的点坐标
lazy=True表示点不会立即评估,而是在调用maximize()时一起评估
-
maximize()方法:- 当手动指定初始点时,应将
init_points设为0 n_iter控制后续的迭代次数
- 当手动指定初始点时,应将
实际应用建议
在实际应用中,选择初始点时应考虑:
- 边界点:包含搜索空间的边界值
- 已知的感兴趣区域:如果有先验知识,可以在潜在最优区域附近采样
- 均匀分布:使初始点尽可能覆盖整个搜索空间
对于高维问题,初始点的数量应适当增加,以确保模型能较好地捕捉目标函数的特征。
通过合理设置初始点,可以显著提高BayesianOptimization的效率和效果,特别是在计算资源有限或目标函数评估代价较高的情况下。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695