BayesianOptimization库中如何指定初始采样点
2025-05-28 12:27:01作者:鲍丁臣Ursa
在使用BayesianOptimization库进行贝叶斯优化时,初始采样点的选择对优化效果有着重要影响。默认情况下,库会随机选择初始点,但有时我们需要手动指定这些初始点以获得更好的优化效果。
初始采样点的重要性
贝叶斯优化是一种基于序列模型的优化方法,它通过构建目标函数的概率模型来指导搜索过程。初始采样点作为优化过程的起点,直接影响着高斯过程模型的初始拟合效果。合理的初始点选择可以:
- 加速收敛过程
- 避免陷入局部最优
- 提高模型对目标函数的理解
指定初始采样点的方法
BayesianOptimization库提供了probe()方法来实现手动指定初始点。具体使用方式如下:
from bayes_opt import BayesianOptimization
# 定义目标函数
def black_box_function(x):
return x**2
# 创建优化器实例
optimizer = BayesianOptimization(
f=black_box_function,
pbounds={"x": (-2, 2)},
verbose=2,
random_state=7,
)
# 手动指定初始点
optimizer.probe(0, lazy=True) # 第一个初始点x=0
optimizer.probe(1, lazy=True) # 第二个初始点x=1
# 开始优化过程,设置init_points=0避免额外随机采样
optimizer.maximize(
init_points=0,
n_iter=1,
)
关键参数说明
-
probe()方法:- 第一个参数是要探测的点坐标
lazy=True表示点不会立即评估,而是在调用maximize()时一起评估
-
maximize()方法:- 当手动指定初始点时,应将
init_points设为0 n_iter控制后续的迭代次数
- 当手动指定初始点时,应将
实际应用建议
在实际应用中,选择初始点时应考虑:
- 边界点:包含搜索空间的边界值
- 已知的感兴趣区域:如果有先验知识,可以在潜在最优区域附近采样
- 均匀分布:使初始点尽可能覆盖整个搜索空间
对于高维问题,初始点的数量应适当增加,以确保模型能较好地捕捉目标函数的特征。
通过合理设置初始点,可以显著提高BayesianOptimization的效率和效果,特别是在计算资源有限或目标函数评估代价较高的情况下。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219