使用Mem0构建具备持久记忆能力的AI智能体
2025-07-08 06:18:53作者:魏献源Searcher
项目概述
Mem0是一个提供持久记忆能力的AI服务,通过与OpenAI Agents SDK集成,开发者可以创建具备记忆功能的AI智能体。本文将详细介绍如何使用Mem0为AI智能体添加记忆能力,使其能够记住过往对话并根据上下文提供更精准的响应。
核心优势
Mem0为AI智能体带来的核心价值包括:
- 上下文感知:智能体可以记住用户偏好和历史对话
- 长期记忆:信息存储不受单次会话限制
- 精准检索:基于语义搜索快速定位相关记忆
- 多用户隔离:支持为不同用户维护独立的记忆空间
环境准备
安装依赖
首先需要安装必要的Python包:
pip install mem0ai pydantic openai-agents
配置API密钥
将Mem0 API密钥设置为环境变量:
export MEM0_API_KEY="your_mem0_api_key"
或者在Python代码中直接设置:
import os
os.environ["MEM0_API_KEY"] = "your_mem0_api_key"
架构设计
Mem0集成架构包含三个核心组件:
- 上下文管理器:定义用户上下文信息
- 记忆工具集:实现记忆的增删改查功能
- 记忆智能体:配置了记忆工具的主智能体
详细实现步骤
1. 导入依赖库
from __future__ import annotations
import os
import asyncio
from pydantic import BaseModel
from mem0 import AsyncMemoryClient
from agents import (
Agent,
ItemHelpers,
MessageOutputItem,
RunContextWrapper,
Runner,
ToolCallItem,
ToolCallOutputItem,
TResponseInputItem,
function_tool,
)
2. 定义记忆上下文模型
使用Pydantic定义用户上下文模型:
class Mem0Context(BaseModel):
user_id: str | None = None
3. 初始化Mem0客户端
client = AsyncMemoryClient(api_key=os.getenv("MEM0_API_KEY"))
4. 实现记忆工具
添加记忆
@function_tool
async def add_to_memory(
context: RunContextWrapper[Mem0Context],
content: str,
) -> str:
"""
将信息存入Mem0
参数:
content: 需要存储的内容
"""
messages = [{"role": "user", "content": content}]
user_id = context.context.user_id or "default_user"
await client.add(messages, user_id=user_id)
return f"已存储信息: {content}"
搜索记忆
@function_tool
async def search_memory(
context: RunContextWrapper[Mem0Context],
query: str,
) -> str:
"""
在Mem0中搜索记忆
参数:
query: 搜索查询词
"""
user_id = context.context.user_id or "default_user"
memories = await client.search(query, user_id=user_id, output_format="v1.1")
results = '\n'.join([result["memory"] for result in memories["results"]])
return str(results)
获取全部记忆
@function_tool
async def get_all_memory(
context: RunContextWrapper[Mem0Context],
) -> str:
"""从Mem0获取所有记忆"""
user_id = context.context.user_id or "default_user"
memories = await client.get_all(user_id=user_id, output_format="v1.1")
results = '\n'.join([result["memory"] for result in memories["results"]])
return str(results)
5. 配置记忆智能体
memory_agent = Agent[Mem0Context](
name="记忆助手",
instructions="""你是一个具备记忆能力的智能助手,可以:
1. 使用add_to_memory存储新信息
2. 使用search_memory搜索已有信息
3. 使用get_all_memory检索所有存储的信息
当用户提问时:
- 如需存储信息,使用add_to_memory
- 如需搜索特定信息,使用search_memory
- 如需查看所有存储内容,使用get_all_memory""",
tools=[add_to_memory, search_memory, get_all_memory],
)
6. 实现主运行循环
async def main():
current_agent: Agent[Mem0Context] = memory_agent
input_items: list[TResponseInputItem] = []
context = Mem0Context()
while True:
user_input = input("请输入消息(输入'quit'退出): ")
if user_input.lower() == 'quit':
break
input_items.append({"content": user_input, "role": "user"})
result = await Runner.run(current_agent, input_items, context=context)
for new_item in result.new_items:
agent_name = new_item.agent.name
if isinstance(new_item, MessageOutputItem):
print(f"{agent_name}: {ItemHelpers.text_message_output(new_item)}")
elif isinstance(new_item, ToolCallItem):
print(f"{agent_name}: 正在调用工具")
elif isinstance(new_item, ToolCallOutputItem):
print(f"{agent_name}: 工具调用输出: {new_item.output}")
else:
print(f"{agent_name}: 跳过项目: {new_item.__class__.__name__}")
input_items = result.to_input_list()
if __name__ == "__main__":
asyncio.run(main())
使用场景示例
存储信息
用户: 记住我最喜欢的颜色是蓝色
智能体: 正在调用工具
智能体: 工具调用输出: 已存储信息: 最喜欢的颜色是蓝色
智能体: 我已将您最喜欢的颜色是蓝色存入记忆,以后会记住这个信息。
搜索记忆
用户: 我最喜欢什么颜色?
智能体: 正在调用工具
智能体: 工具调用输出: 最喜欢的颜色是蓝色
智能体: 根据之前的对话,您最喜欢的颜色是蓝色。
检索所有记忆
用户: 你了解我哪些信息?
智能体: 正在调用工具
智能体: 工具调用输出: 最喜欢的颜色是蓝色
生日是3月15日
智能体: 根据我们的对话记录,我知道:
1. 您最喜欢的颜色是蓝色
2. 您的生日是3月15日
高级配置
自定义用户ID
可以为不同用户指定不同的ID,维护独立的记忆空间:
context = Mem0Context(user_id="user123")
最佳实践
- 记忆组织:将相关信息分组存储,便于后续检索
- 定期清理:对于不再相关的记忆可以定期清理
- 隐私保护:敏感信息存储前应考虑加密处理
- 记忆验证:关键信息可设计二次确认机制
总结
通过Mem0与OpenAI Agents SDK的集成,开发者可以轻松为AI智能体添加强大的记忆能力。这种能力使得智能体能够提供更加个性化、上下文相关的服务,显著提升用户体验。本文详细介绍了从环境配置到实际应用的完整流程,开发者可以根据实际需求进行调整和扩展。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
165
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
598
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
230
仓颉编译器源码及 cjdb 调试工具。
C++
123
671
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
196
72
仓颉编程语言测试用例。
Cangjie
36
672