使用Mem0构建具备持久记忆能力的AI智能体
2025-07-08 09:56:45作者:魏献源Searcher
项目概述
Mem0是一个提供持久记忆能力的AI服务,通过与OpenAI Agents SDK集成,开发者可以创建具备记忆功能的AI智能体。本文将详细介绍如何使用Mem0为AI智能体添加记忆能力,使其能够记住过往对话并根据上下文提供更精准的响应。
核心优势
Mem0为AI智能体带来的核心价值包括:
- 上下文感知:智能体可以记住用户偏好和历史对话
- 长期记忆:信息存储不受单次会话限制
- 精准检索:基于语义搜索快速定位相关记忆
- 多用户隔离:支持为不同用户维护独立的记忆空间
环境准备
安装依赖
首先需要安装必要的Python包:
pip install mem0ai pydantic openai-agents
配置API密钥
将Mem0 API密钥设置为环境变量:
export MEM0_API_KEY="your_mem0_api_key"
或者在Python代码中直接设置:
import os
os.environ["MEM0_API_KEY"] = "your_mem0_api_key"
架构设计
Mem0集成架构包含三个核心组件:
- 上下文管理器:定义用户上下文信息
- 记忆工具集:实现记忆的增删改查功能
- 记忆智能体:配置了记忆工具的主智能体
详细实现步骤
1. 导入依赖库
from __future__ import annotations
import os
import asyncio
from pydantic import BaseModel
from mem0 import AsyncMemoryClient
from agents import (
Agent,
ItemHelpers,
MessageOutputItem,
RunContextWrapper,
Runner,
ToolCallItem,
ToolCallOutputItem,
TResponseInputItem,
function_tool,
)
2. 定义记忆上下文模型
使用Pydantic定义用户上下文模型:
class Mem0Context(BaseModel):
user_id: str | None = None
3. 初始化Mem0客户端
client = AsyncMemoryClient(api_key=os.getenv("MEM0_API_KEY"))
4. 实现记忆工具
添加记忆
@function_tool
async def add_to_memory(
context: RunContextWrapper[Mem0Context],
content: str,
) -> str:
"""
将信息存入Mem0
参数:
content: 需要存储的内容
"""
messages = [{"role": "user", "content": content}]
user_id = context.context.user_id or "default_user"
await client.add(messages, user_id=user_id)
return f"已存储信息: {content}"
搜索记忆
@function_tool
async def search_memory(
context: RunContextWrapper[Mem0Context],
query: str,
) -> str:
"""
在Mem0中搜索记忆
参数:
query: 搜索查询词
"""
user_id = context.context.user_id or "default_user"
memories = await client.search(query, user_id=user_id, output_format="v1.1")
results = '\n'.join([result["memory"] for result in memories["results"]])
return str(results)
获取全部记忆
@function_tool
async def get_all_memory(
context: RunContextWrapper[Mem0Context],
) -> str:
"""从Mem0获取所有记忆"""
user_id = context.context.user_id or "default_user"
memories = await client.get_all(user_id=user_id, output_format="v1.1")
results = '\n'.join([result["memory"] for result in memories["results"]])
return str(results)
5. 配置记忆智能体
memory_agent = Agent[Mem0Context](
name="记忆助手",
instructions="""你是一个具备记忆能力的智能助手,可以:
1. 使用add_to_memory存储新信息
2. 使用search_memory搜索已有信息
3. 使用get_all_memory检索所有存储的信息
当用户提问时:
- 如需存储信息,使用add_to_memory
- 如需搜索特定信息,使用search_memory
- 如需查看所有存储内容,使用get_all_memory""",
tools=[add_to_memory, search_memory, get_all_memory],
)
6. 实现主运行循环
async def main():
current_agent: Agent[Mem0Context] = memory_agent
input_items: list[TResponseInputItem] = []
context = Mem0Context()
while True:
user_input = input("请输入消息(输入'quit'退出): ")
if user_input.lower() == 'quit':
break
input_items.append({"content": user_input, "role": "user"})
result = await Runner.run(current_agent, input_items, context=context)
for new_item in result.new_items:
agent_name = new_item.agent.name
if isinstance(new_item, MessageOutputItem):
print(f"{agent_name}: {ItemHelpers.text_message_output(new_item)}")
elif isinstance(new_item, ToolCallItem):
print(f"{agent_name}: 正在调用工具")
elif isinstance(new_item, ToolCallOutputItem):
print(f"{agent_name}: 工具调用输出: {new_item.output}")
else:
print(f"{agent_name}: 跳过项目: {new_item.__class__.__name__}")
input_items = result.to_input_list()
if __name__ == "__main__":
asyncio.run(main())
使用场景示例
存储信息
用户: 记住我最喜欢的颜色是蓝色
智能体: 正在调用工具
智能体: 工具调用输出: 已存储信息: 最喜欢的颜色是蓝色
智能体: 我已将您最喜欢的颜色是蓝色存入记忆,以后会记住这个信息。
搜索记忆
用户: 我最喜欢什么颜色?
智能体: 正在调用工具
智能体: 工具调用输出: 最喜欢的颜色是蓝色
智能体: 根据之前的对话,您最喜欢的颜色是蓝色。
检索所有记忆
用户: 你了解我哪些信息?
智能体: 正在调用工具
智能体: 工具调用输出: 最喜欢的颜色是蓝色
生日是3月15日
智能体: 根据我们的对话记录,我知道:
1. 您最喜欢的颜色是蓝色
2. 您的生日是3月15日
高级配置
自定义用户ID
可以为不同用户指定不同的ID,维护独立的记忆空间:
context = Mem0Context(user_id="user123")
最佳实践
- 记忆组织:将相关信息分组存储,便于后续检索
- 定期清理:对于不再相关的记忆可以定期清理
- 隐私保护:敏感信息存储前应考虑加密处理
- 记忆验证:关键信息可设计二次确认机制
总结
通过Mem0与OpenAI Agents SDK的集成,开发者可以轻松为AI智能体添加强大的记忆能力。这种能力使得智能体能够提供更加个性化、上下文相关的服务,显著提升用户体验。本文详细介绍了从环境配置到实际应用的完整流程,开发者可以根据实际需求进行调整和扩展。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896