在GKE上部署OSDFIR Infrastructure项目全指南
2025-06-19 22:39:03作者:秋阔奎Evelyn
前言
OSDFIR Infrastructure是一个开源的数字取证和事件响应(DFIR)解决方案,它整合了Turbinia、Timesketch和GRR等多个知名安全工具,为安全团队提供了一套完整的取证分析平台。本文将详细介绍如何在Google Kubernetes Engine(GKE)上部署这套系统。
核心组件介绍
在开始部署前,让我们先了解OSDFIR Infrastructure包含的主要组件:
- Turbinia:开源的自动化数字取证框架,专门用于处理云环境中的取证任务
- Timesketch:协作式取证时间线分析工具
- GRR(Google Rapid Response):远程实时取证工具(当前版本暂不支持)
环境准备
账户与权限要求
- 有效的Google Cloud Platform账户
- 项目管理员权限
- 足够的配额(建议至少8vCPU)
工具安装清单
- gcloud CLI:Google Cloud命令行工具
- kubectl:Kubernetes集群管理工具
- Helm:Kubernetes包管理工具
专业建议:使用Google Cloud Shell可以免去本地环境配置的麻烦,它已预装所有必需工具。
详细部署步骤
第一步:初始化gcloud环境
gcloud init
执行后会引导你完成:
- 选择默认项目
- 设置计算区域和可用区(建议选择地理位置最近的区域)
第二步:启用必要API服务
gcloud services enable iam.googleapis.com \
container.googleapis.com \
compute.googleapis.com \
file.googleapis.com
第三步:设置环境变量
export PROJECT_ID="your-project-id"
export PROJECT_NUMBER=$(gcloud projects describe $PROJECT_ID --format="value(projectNumber)")
export REGION="asia-east1"
export ZONE="asia-east1-a"
export CLUSTER="osdfir-cluster"
export NAMESPACE="default"
export KSA_NAME="turbinia"
第四步:创建GKE集群
gcloud container clusters create $CLUSTER \
--num-nodes=1 \
--machine-type "e2-standard-8" \
--zone $ZONE \
--workload-pool=$PROJECT_ID.svc.id.goog \
--enable-l4-ilb-subsetting \
--addons=GcpFilestoreCsiDriver,GcsFuseCsiDriver,HttpLoadBalancing
关键参数说明:
--machine-type:必须至少e2-standard-8(8vCPU)--workload-pool:启用Workload Identity--addons:添加必要的存储和网络插件
集群创建通常需要4-5分钟
第五步:配置kubectl访问
sudo apt-get install google-cloud-cli-gke-gcloud-auth-plugin
export USE_GKE_GCLOUD_AUTH_PLUGIN=True
gcloud container clusters get-credentials $CLUSTER --zone $ZONE
验证连接:
kubectl get nodes -o wide
第六步:创建Turbinia服务账号
gcloud projects add-iam-policy-binding $PROJECT_ID \
--role=roles/compute.instanceAdmin \
--member=principal://iam.googleapis.com/projects/$PROJECT_NUMBER/locations/global/workloadIdentityPools/$PROJECT_ID.svc.id.goog/subject/ns/$NAMESPACE/sa/$KSA_NAME
gcloud projects add-iam-policy-binding $PROJECT_ID \
--role=roles/iam.serviceAccountUser \
--member=principal://iam.googleapis.com/projects/$PROJECT_NUMBER/locations/global/workloadIdentityPools/$PROJECT_ID.svc.id.goog/subject/ns/$NAMESPACE/sa/$KSA_NAME
第七步:Helm部署OSDFIR Infrastructure
- 添加Helm仓库:
helm repo add osdfir-charts https://google.github.io/osdfir-infrastructure
helm repo update
- 执行部署:
helm install my-release osdfir-charts/osdfir-infrastructure \
--set turbinia.gcp.enabled=true \
--set turbinia.gcp.projectID=$PROJECT_ID \
--set turbinia.gcp.projectRegion=$REGION \
--set turbinia.gcp.projectZone=$ZONE \
--set turbinia.serviceaccount.name=$KSA_NAME \
--set persistence.size=10Gi
参数说明:
turbinia.gcp.enabled:启用GCP集成persistence.size:设置持久化存储大小
- 验证部署状态:
kubectl get pods
第八步:配置dfTimewolf
- 安装dfTimewolf:
git clone https://github.com/log2timeline/dftimewolf.git
cd dftimewolf
pip install poetry
poetry install && poetry shell
- 获取Timesketch密码:
kubectl get secret --namespace default my-release-timesketch-secret -o jsonpath="{.data.timesketch-user}" | base64 -d
- 创建配置文件:
cat > ~/.dftimewolfrc << EOF
{
"timesketch_username": "timesketch",
"timesketch_password": "$TIMESKETCH_PASSWORD",
"timesketch_endpoint": "http://127.0.0.1:5000",
"turbinia_api": "http://127.0.0.1:8000"
}
EOF
实战:处理GCP磁盘
创建测试磁盘
gcloud compute disks create test-debian-image \
--image=debian-12-bookworm-arm64-v20241009 \
--image-project debian-cloud \
--size 10GB \
--zone $ZONE
端口转发
# Terminal 1
kubectl port-forward service/my-release-turbinia 8000:8000
# Terminal 2
kubectl port-forward service/my-release-timesketch 5000:5000
执行分析任务
dftimewolf gcp_turbinia_ts $PROJECT_ID $ZONE --disk_names test-debian-image
高级应用场景
跨项目/区域磁盘分析
使用gcp_turbinia_disk_copy_ts配方可以处理不同项目或区域的磁盘:
dftimewolf gcp_turbinia_disk_copy_ts \
$SOURCE_PROJECT $DEST_PROJECT \
$SOURCE_ZONE $DEST_ZONE \
--disk_names disk-to-analyze
共享文件存储配置(多节点集群)
对于生产环境的多节点部署,需要配置共享存储:
helm install my-release osdfir-charts/osdfir-infrastructure \
--set persistence.storageClass="standard-rwx" \
--set persistence.accessModes[0]="ReadWriteMany" \
# 其他参数...
排错指南
-
Pod启动失败:
- 检查资源配额:
gcloud compute project-info describe --project $PROJECT_ID - 查看详细日志:
kubectl logs <pod-name>
- 检查资源配额:
-
磁盘处理失败:
- 确认磁盘区域与集群区域一致
- 检查服务账号权限
-
网络连接问题:
- 验证防火墙规则
- 检查VPC网络配置
最佳实践建议
-
生产环境部署:
- 使用专用VPC网络
- 配置适当的RBAC权限
- 启用审计日志
-
性能优化:
- 根据工作负载调整节点规格
- 配置自动扩缩容
- 使用SSD持久化存储
-
安全建议:
- 定期轮换凭证
- 启用网络策略
- 限制API访问
总结
通过本指南,您已经成功在GKE上部署了OSDFIR Infrastructure,并完成了第一个磁盘分析任务。这套系统为云环境取证提供了强大的自动化能力,后续可以根据实际需求扩展更多功能模块。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C096
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
227
95
暂无简介
Dart
727
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
285
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
702
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
442
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19