EVA:高效视频标注工具
2024-10-10 12:23:40作者:段琳惟
项目介绍
EVA 是一款基于 Web 的视频和图像序列标注工具,旨在提供高效、便捷的标注体验。作为 BeaverDam 的重新设计版本,EVA 不仅继承了其优秀的标注功能,还增加了强大的跟踪能力。用户可以通过简单的操作,对视频中的目标进行边界框级别的标注,并支持将标注结果导出为 YOLO 或 Pascal VOC 格式,极大地简化了计算机视觉任务的前期准备工作。
项目技术分析
EVA 采用了现代 Web 技术栈,结合 Python 和 Django 框架,为用户提供了一个稳定且高效的标注平台。以下是 EVA 的技术亮点:
- Web 技术栈:基于 Django 框架,EVA 提供了一个响应迅速、易于扩展的 Web 应用。
- 视频处理:支持 FFMPEG 进行视频上传和处理,确保视频标注的流畅性。
- 标注格式:支持 YOLO 和 Pascal VOC 两种主流的标注格式导出,方便用户在不同深度学习框架中使用。
- 跟踪算法:内置了 KCF 跟踪算法,能够在视频序列中自动跟踪目标,减少手动标注的工作量。
项目及技术应用场景
EVA 适用于多种计算机视觉任务的前期数据准备阶段,特别是在需要大量视频标注的场景中表现尤为出色。以下是一些典型的应用场景:
- 自动驾驶:标注道路上的车辆、行人、交通标志等,为自动驾驶系统提供训练数据。
- 视频监控:标注监控视频中的异常行为或目标,用于安防系统的训练和优化。
- 医学影像:标注医学影像中的病变区域,辅助医生进行诊断和治疗。
- 体育分析:标注体育比赛视频中的运动员动作,用于运动分析和训练指导。
项目特点
EVA 作为一款开源的视频标注工具,具有以下显著特点:
- 高效标注:支持边界框级别的标注,用户可以快速准确地标注视频中的目标。
- 自动跟踪:内置 KCF 跟踪算法,能够自动跟踪视频序列中的目标,减少重复标注的工作量。
- 多格式导出:支持 YOLO 和 Pascal VOC 两种标注格式导出,兼容主流的深度学习框架。
- 跨平台支持:提供 Windows、Linux 和 Docker 三种安装方式,满足不同用户的需求。
- 易于扩展:基于 Django 框架,用户可以根据需求轻松扩展和定制功能。
无论你是计算机视觉领域的研究人员,还是需要进行大量视频标注的开发者,EVA 都能为你提供一个高效、便捷的标注解决方案。立即尝试 EVA,体验视频标注的新高度!
项目地址:EVA GitHub
贡献者:感谢 Ludwig Thaung 对 EVA 工具的贡献。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K