ZenML项目中Azure Blob Storage的DefaultAzureCredentials支持分析
2025-06-12 17:50:40作者:幸俭卉
背景介绍
在云原生机器学习平台ZenML的实际部署中,Azure Kubernetes Service(AKS)集群结合工作负载身份(workload identity)是一种常见的架构选择。这种架构下,开发者期望能够充分利用Azure的隐式认证机制(DefaultAzureCredential)来访问各类Azure服务,包括Blob Storage和Container Registry等核心组件。
当前限制与用户痛点
目前ZenML文档明确指出,对于Azure Blob Storage资源,唯一支持的认证方式是服务主体(service principal)认证。同样,对于Azure Container Registry(ACR),如果使用非服务主体的认证方式,则必须启用管理员账户才能正常认证。
这种限制给用户带来了以下困扰:
- 无法完全采用无静态凭证的安全实践
- 需要额外维护服务主体凭证
- 对于ACR必须启用管理员账户,增加了安全风险
技术可行性分析
通过深入分析ZenML代码库和adlfs(Azure Data Lake File System)库的实现,我们发现技术层面存在支持DefaultAzureCredential的可能性:
- adlfs库原生支持通过DefaultAzureCredential进行自动凭证解析
- 当前ZenML的AzureArtifactStore实现已经将认证信息传递给adlfs.AzureBlobFileSystem
- 主要限制似乎来自于服务连接器(service connector)的实现方式,而非底层技术限制
服务连接器的认证流程解析
ZenML服务连接器的工作机制存在一些关键特性:
- 通常流程:客户端请求→服务器生成短期凭证→客户端使用短期凭证
- 对于Blob Storage的特殊处理:客户端直接接收服务主体凭证
- 隐式认证带来的问题:服务器和客户端可能使用不同的工作负载身份
这种不一致性可能导致难以调试的问题,特别是在分布式环境中。服务器端验证时使用服务器的工作负载身份,而客户端运行时又可能使用客户端的工作负载身份,造成认证上下文不一致。
解决方案探讨
虽然存在上述挑战,但我们认为可以通过以下方式解决:
- 放宽限制,允许使用DefaultAzureCredential,但需明确文档说明潜在风险
- 实现更完善的解决方案:基于服务主体凭证生成短期会话令牌
- 需要处理Azure令牌的资源范围限制
- adlfs客户端需要支持多范围会话令牌
实施建议
对于希望采用DefaultAzureCredential的用户,我们建议:
- 确保所有运行环境(服务器和客户端)具有一致的工作负载身份配置
- 明确理解隐式认证在不同环境下的行为差异
- 对于生产环境,仍建议评估服务主体+短期令牌方案的安全性优势
未来展望
随着ZenML对Azure集成的持续完善,我们预期将看到:
- 更灵活的认证机制支持
- 改进的短期令牌生成和分发机制
- 更细粒度的资源访问控制
这种演进将使ZenML在Azure环境中的部署更加安全、灵活,同时保持开发者体验的一致性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
187
206
暂无简介
Dart
630
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.63 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
292
104
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
267
仓颉编译器源码及 cjdb 调试工具。
C++
128
858