Boulder项目中的Redis速率限制机制优化:从SET到INCRBY的演进
在分布式系统设计中,速率限制是一个至关重要的组件,它保护系统免受过载请求的影响。Boulder项目作为Let's Encrypt的ACME服务器实现,近期对其Redis速率限制机制进行了一项重要改进,将原有的SET操作替换为INCRBY操作,从根本上解决了在高并发场景下的速率限制绕过问题。
原有机制及其缺陷
Boulder项目原本采用基于Redis的速率限制机制,其核心工作原理如下:
- 从Redis读取当前的"理论到达时间"(Theoretical Arrival Time, TAT)
- 将请求成本(令牌数量乘以发射间隔)加到TAT上
- 如果新的TAT超过允许的未来时间窗口,则拒绝请求
- 否则,使用SET命令将新的TAT写回Redis
这种设计在常规流量下表现良好,但在客户端极速发送大量请求时会出现竞态条件。当多个请求几乎同时到达时,它们可能读取相同的TAT值,计算出相同的新TAT值,然后都将这个相同的新TAT值写回Redis。这种情况下,系统无法感知到这些额外的请求,导致速率限制被绕过。
问题本质分析
这个问题的根源在于"读取-修改-写入"模式中的非原子性操作。在数据库实现的速率限制中,虽然也存在类似的读取-修改-写入结构,但由于写入操作通常是追加式的(如在Orders表中插入新行),系统最终能够识别出所有请求并开始阻止未来的请求。
Redis的SET操作是覆盖式的,多个并发请求会互相覆盖对方的写入,导致系统无法准确跟踪实际的请求量。这与数据库的追加写入形成鲜明对比,后者能够保留所有请求的历史记录。
解决方案:INCRBY的引入
受业界类似方案的启发,Boulder团队决定采用Redis的INCRBY命令来重构速率限制机制。新的工作流程如下:
- 从Redis读取当前的TAT(存储为Unix纪元整数)
- 将请求成本(整数秒数)加到TAT上
- 如果新的TAT超过允许的未来时间窗口,则拒绝请求
- 否则,使用INCRBY命令将请求成本增量写入Redis
这种改进带来了几个关键优势:
- 原子性操作:INCRBY是原子操作,消除了竞态条件
- 累积效应:多个INCRBY操作会叠加,而不是互相覆盖
- 精确计数:系统能够准确跟踪所有请求,即使在高并发情况下
- 即时响应:系统能够立即识别超额请求,而不需要等待后续请求
技术实现细节
在实际实现中,每个速率限制计数器现在存储为一个整数,表示当前的理论到达时间。当请求到达时:
- 系统首先检查当前TAT与当前时间的差值
- 如果差值超过允许的窗口,请求被拒绝
- 否则,系统使用INCRBY命令增加TAT值
- 增加后的TAT值用于决定后续请求的处理
这种设计确保了即使在极高并发情况下,系统也能准确跟踪所有请求,防止任何客户端绕过速率限制。
总结
Boulder项目通过将Redis速率限制机制从SET操作改为INCRBY操作,有效解决了高并发场景下的速率限制绕过问题。这一改进不仅提升了系统的安全性,也展示了在分布式系统中处理竞态条件的经典模式。通过利用Redis的原子性增量操作,Boulder现在能够提供更加可靠和精确的速率限制功能,这对于像Let's Encrypt这样关键的基础设施服务至关重要。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00