Boulder项目中的Redis速率限制机制优化:从SET到INCRBY的演进
在分布式系统设计中,速率限制是一个至关重要的组件,它保护系统免受过载请求的影响。Boulder项目作为Let's Encrypt的ACME服务器实现,近期对其Redis速率限制机制进行了一项重要改进,将原有的SET操作替换为INCRBY操作,从根本上解决了在高并发场景下的速率限制绕过问题。
原有机制及其缺陷
Boulder项目原本采用基于Redis的速率限制机制,其核心工作原理如下:
- 从Redis读取当前的"理论到达时间"(Theoretical Arrival Time, TAT)
- 将请求成本(令牌数量乘以发射间隔)加到TAT上
- 如果新的TAT超过允许的未来时间窗口,则拒绝请求
- 否则,使用SET命令将新的TAT写回Redis
这种设计在常规流量下表现良好,但在客户端极速发送大量请求时会出现竞态条件。当多个请求几乎同时到达时,它们可能读取相同的TAT值,计算出相同的新TAT值,然后都将这个相同的新TAT值写回Redis。这种情况下,系统无法感知到这些额外的请求,导致速率限制被绕过。
问题本质分析
这个问题的根源在于"读取-修改-写入"模式中的非原子性操作。在数据库实现的速率限制中,虽然也存在类似的读取-修改-写入结构,但由于写入操作通常是追加式的(如在Orders表中插入新行),系统最终能够识别出所有请求并开始阻止未来的请求。
Redis的SET操作是覆盖式的,多个并发请求会互相覆盖对方的写入,导致系统无法准确跟踪实际的请求量。这与数据库的追加写入形成鲜明对比,后者能够保留所有请求的历史记录。
解决方案:INCRBY的引入
受业界类似方案的启发,Boulder团队决定采用Redis的INCRBY命令来重构速率限制机制。新的工作流程如下:
- 从Redis读取当前的TAT(存储为Unix纪元整数)
- 将请求成本(整数秒数)加到TAT上
- 如果新的TAT超过允许的未来时间窗口,则拒绝请求
- 否则,使用INCRBY命令将请求成本增量写入Redis
这种改进带来了几个关键优势:
- 原子性操作:INCRBY是原子操作,消除了竞态条件
- 累积效应:多个INCRBY操作会叠加,而不是互相覆盖
- 精确计数:系统能够准确跟踪所有请求,即使在高并发情况下
- 即时响应:系统能够立即识别超额请求,而不需要等待后续请求
技术实现细节
在实际实现中,每个速率限制计数器现在存储为一个整数,表示当前的理论到达时间。当请求到达时:
- 系统首先检查当前TAT与当前时间的差值
- 如果差值超过允许的窗口,请求被拒绝
- 否则,系统使用INCRBY命令增加TAT值
- 增加后的TAT值用于决定后续请求的处理
这种设计确保了即使在极高并发情况下,系统也能准确跟踪所有请求,防止任何客户端绕过速率限制。
总结
Boulder项目通过将Redis速率限制机制从SET操作改为INCRBY操作,有效解决了高并发场景下的速率限制绕过问题。这一改进不仅提升了系统的安全性,也展示了在分布式系统中处理竞态条件的经典模式。通过利用Redis的原子性增量操作,Boulder现在能够提供更加可靠和精确的速率限制功能,这对于像Let's Encrypt这样关键的基础设施服务至关重要。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00