Boulder项目中的Redis速率限制机制优化:从SET到INCRBY的演进
在分布式系统设计中,速率限制是一个至关重要的组件,它保护系统免受过载请求的影响。Boulder项目作为Let's Encrypt的ACME服务器实现,近期对其Redis速率限制机制进行了一项重要改进,将原有的SET操作替换为INCRBY操作,从根本上解决了在高并发场景下的速率限制绕过问题。
原有机制及其缺陷
Boulder项目原本采用基于Redis的速率限制机制,其核心工作原理如下:
- 从Redis读取当前的"理论到达时间"(Theoretical Arrival Time, TAT)
- 将请求成本(令牌数量乘以发射间隔)加到TAT上
- 如果新的TAT超过允许的未来时间窗口,则拒绝请求
- 否则,使用SET命令将新的TAT写回Redis
这种设计在常规流量下表现良好,但在客户端极速发送大量请求时会出现竞态条件。当多个请求几乎同时到达时,它们可能读取相同的TAT值,计算出相同的新TAT值,然后都将这个相同的新TAT值写回Redis。这种情况下,系统无法感知到这些额外的请求,导致速率限制被绕过。
问题本质分析
这个问题的根源在于"读取-修改-写入"模式中的非原子性操作。在数据库实现的速率限制中,虽然也存在类似的读取-修改-写入结构,但由于写入操作通常是追加式的(如在Orders表中插入新行),系统最终能够识别出所有请求并开始阻止未来的请求。
Redis的SET操作是覆盖式的,多个并发请求会互相覆盖对方的写入,导致系统无法准确跟踪实际的请求量。这与数据库的追加写入形成鲜明对比,后者能够保留所有请求的历史记录。
解决方案:INCRBY的引入
受业界类似方案的启发,Boulder团队决定采用Redis的INCRBY命令来重构速率限制机制。新的工作流程如下:
- 从Redis读取当前的TAT(存储为Unix纪元整数)
- 将请求成本(整数秒数)加到TAT上
- 如果新的TAT超过允许的未来时间窗口,则拒绝请求
- 否则,使用INCRBY命令将请求成本增量写入Redis
这种改进带来了几个关键优势:
- 原子性操作:INCRBY是原子操作,消除了竞态条件
- 累积效应:多个INCRBY操作会叠加,而不是互相覆盖
- 精确计数:系统能够准确跟踪所有请求,即使在高并发情况下
- 即时响应:系统能够立即识别超额请求,而不需要等待后续请求
技术实现细节
在实际实现中,每个速率限制计数器现在存储为一个整数,表示当前的理论到达时间。当请求到达时:
- 系统首先检查当前TAT与当前时间的差值
- 如果差值超过允许的窗口,请求被拒绝
- 否则,系统使用INCRBY命令增加TAT值
- 增加后的TAT值用于决定后续请求的处理
这种设计确保了即使在极高并发情况下,系统也能准确跟踪所有请求,防止任何客户端绕过速率限制。
总结
Boulder项目通过将Redis速率限制机制从SET操作改为INCRBY操作,有效解决了高并发场景下的速率限制绕过问题。这一改进不仅提升了系统的安全性,也展示了在分布式系统中处理竞态条件的经典模式。通过利用Redis的原子性增量操作,Boulder现在能够提供更加可靠和精确的速率限制功能,这对于像Let's Encrypt这样关键的基础设施服务至关重要。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









