Semmle QL C++项目中如何建模外部函数的间接数据流
2025-05-28 13:58:48作者:戚魁泉Nursing
在C++代码分析中,处理通过外部函数传递的间接数据流是一个常见挑战。本文将深入探讨如何在Semmle QL中有效建模这类数据流场景。
问题背景
当分析C++代码时,我们经常遇到需要通过外部函数传递数据流的情况。例如,一个结构体的成员变量被污染后,通过多个外部函数处理后,最终被传递到接收函数。这种情况下,我们需要确保数据流分析能够正确跟踪整个传递链。
典型场景分析
考虑以下典型代码模式:
struct S {
int data;
int dummy;
};
S* process_taint(S* input);
void process_taint2(S* input, S* output);
void example() {
S* s = new S();
S* t;
s->data = taint_source();
process_taint2(s, t);
taint_sink(t->data);
}
在这个例子中,data成员被污染源赋值后,通过process_taint2函数处理后传递给接收函数。我们需要确保数据流分析能够跟踪这一完整路径。
解决方案
方法一:使用模型文件(MaD)
在Semmle QL中,可以通过模型文件(Model and Definitions)来描述外部函数的行为。对于上述场景,最有效的解决方案是使用"value-preserving"模型:
extensions:
- addsTo:
pack: codeql/cpp-all
extensible: summaryModel
data:
- ["", "", False, "process_taint", "", "", "Argument[*0]", "ReturnValue[*]", "value", "manual"]
- ["", "", False, "process_taint2", "", "", "Argument[*0]", "Argument[*1]", "value", "manual"]
这种方法的优势在于:
- 简洁有效,不需要为每个结构体成员单独编写规则
- 能够自动处理所有成员变量的数据流传递
- 避免了手动跟踪每个字段的繁琐工作
方法二:使用isAdditionalFlowStep的局限性
虽然理论上可以通过isAdditionalFlowStep谓词来建模数据流,但这种方法存在重要限制:
- 当访问路径非空时(如跟踪已写入对象但尚未读取的字段),通过
isAdditionalFlowStep添加的流不会被使用 - 容易产生误报,特别是当结构体中有不应被污染的成员时
- 实现复杂,需要精确控制每个可能的流路径
因此,在实际应用中,推荐优先使用模型文件方法。
最佳实践建议
-
优先使用模型文件:对于外部函数的数据流建模,模型文件通常是更简洁有效的选择
-
理解value-preserving语义:这种模型会保留所有成员的数据流状态,适用于大多数简单传递场景
-
谨慎处理结构体成员:如果结构体中包含敏感和非敏感成员,可能需要更精确的建模
-
结合使用:对于复杂场景,可以结合模型文件和自定义数据流步骤来实现精确控制
结论
在Semmle QL中处理C++代码的间接数据流时,通过模型文件使用value-preserving模式是最有效的方法。这种方法不仅简化了配置,还能正确处理结构体成员的数据流传递。理解这一技术可以帮助分析人员更准确地建模复杂的数据流场景,提高静态分析结果的可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248