DeepChat项目搜索功能关键词提取机制解析与优化建议
搜索功能现状分析
DeepChat项目中的搜索功能目前存在一个明显的用户体验问题:当用户输入包含复杂查询意图的自然语言时,系统未能有效提取核心搜索关键词,而是直接将整个查询语句作为搜索内容。这导致搜索引擎返回的结果往往与用户实际需求不符,搜索结果相关性较差。
技术实现原理
项目当前的关键词提取机制依赖于预设的搜索助手模型能力。具体实现中,系统会尝试从用户输入的自然语言中提取核心搜索意图和关键词。这一过程本质上是通过自然语言处理技术实现的意图识别和关键词抽取。
问题根源探究
经过分析,当前系统的问题主要源于以下几个方面:
-
模型能力限制:搜索助手模型可能不具备足够强大的自然语言理解能力,难以准确识别复杂查询中的核心意图和关键词。
-
提取策略简单:当前实现可能采用了较为简单的关键词提取方法,没有充分考虑自然语言查询的多样性和复杂性。
-
缺乏上下文理解:系统可能没有充分利用对话上下文信息来辅助理解用户查询意图。
优化方案建议
针对上述问题,可以考虑以下优化方向:
-
模型升级:采用更先进的自然语言处理模型作为搜索助手,提升意图识别和关键词提取的准确性。
-
多阶段处理:实现分阶段查询处理流程,先进行意图识别,再进行关键词提取,最后生成优化的搜索查询。
-
查询重写:在关键词提取后,对搜索查询进行智能重写,生成更适合搜索引擎处理的查询语句。
-
结果后处理:对搜索结果进行相关性排序和过滤,优先展示与用户意图最匹配的内容。
实施建议
对于开发者而言,可以考虑以下具体实施步骤:
-
评估当前搜索助手模型的性能,收集用户查询和实际搜索结果的匹配情况数据。
-
测试不同NLP模型在意图识别和关键词提取任务上的表现,选择最适合的模型。
-
实现查询日志分析功能,持续监控和优化搜索效果。
-
考虑引入查询建议功能,当系统不确定用户意图时,可以提供多个可能的搜索方向供用户选择。
通过以上优化,可以显著提升DeepChat项目中搜索功能的效果和用户体验,使系统能够更准确地理解用户查询意图,返回更有价值的信息。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00