DeepChat项目搜索功能关键词提取机制解析与优化建议
搜索功能现状分析
DeepChat项目中的搜索功能目前存在一个明显的用户体验问题:当用户输入包含复杂查询意图的自然语言时,系统未能有效提取核心搜索关键词,而是直接将整个查询语句作为搜索内容。这导致搜索引擎返回的结果往往与用户实际需求不符,搜索结果相关性较差。
技术实现原理
项目当前的关键词提取机制依赖于预设的搜索助手模型能力。具体实现中,系统会尝试从用户输入的自然语言中提取核心搜索意图和关键词。这一过程本质上是通过自然语言处理技术实现的意图识别和关键词抽取。
问题根源探究
经过分析,当前系统的问题主要源于以下几个方面:
-
模型能力限制:搜索助手模型可能不具备足够强大的自然语言理解能力,难以准确识别复杂查询中的核心意图和关键词。
-
提取策略简单:当前实现可能采用了较为简单的关键词提取方法,没有充分考虑自然语言查询的多样性和复杂性。
-
缺乏上下文理解:系统可能没有充分利用对话上下文信息来辅助理解用户查询意图。
优化方案建议
针对上述问题,可以考虑以下优化方向:
-
模型升级:采用更先进的自然语言处理模型作为搜索助手,提升意图识别和关键词提取的准确性。
-
多阶段处理:实现分阶段查询处理流程,先进行意图识别,再进行关键词提取,最后生成优化的搜索查询。
-
查询重写:在关键词提取后,对搜索查询进行智能重写,生成更适合搜索引擎处理的查询语句。
-
结果后处理:对搜索结果进行相关性排序和过滤,优先展示与用户意图最匹配的内容。
实施建议
对于开发者而言,可以考虑以下具体实施步骤:
-
评估当前搜索助手模型的性能,收集用户查询和实际搜索结果的匹配情况数据。
-
测试不同NLP模型在意图识别和关键词提取任务上的表现,选择最适合的模型。
-
实现查询日志分析功能,持续监控和优化搜索效果。
-
考虑引入查询建议功能,当系统不确定用户意图时,可以提供多个可能的搜索方向供用户选择。
通过以上优化,可以显著提升DeepChat项目中搜索功能的效果和用户体验,使系统能够更准确地理解用户查询意图,返回更有价值的信息。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00