DeepChat项目搜索功能关键词提取机制解析与优化建议
搜索功能现状分析
DeepChat项目中的搜索功能目前存在一个明显的用户体验问题:当用户输入包含复杂查询意图的自然语言时,系统未能有效提取核心搜索关键词,而是直接将整个查询语句作为搜索内容。这导致搜索引擎返回的结果往往与用户实际需求不符,搜索结果相关性较差。
技术实现原理
项目当前的关键词提取机制依赖于预设的搜索助手模型能力。具体实现中,系统会尝试从用户输入的自然语言中提取核心搜索意图和关键词。这一过程本质上是通过自然语言处理技术实现的意图识别和关键词抽取。
问题根源探究
经过分析,当前系统的问题主要源于以下几个方面:
-
模型能力限制:搜索助手模型可能不具备足够强大的自然语言理解能力,难以准确识别复杂查询中的核心意图和关键词。
-
提取策略简单:当前实现可能采用了较为简单的关键词提取方法,没有充分考虑自然语言查询的多样性和复杂性。
-
缺乏上下文理解:系统可能没有充分利用对话上下文信息来辅助理解用户查询意图。
优化方案建议
针对上述问题,可以考虑以下优化方向:
-
模型升级:采用更先进的自然语言处理模型作为搜索助手,提升意图识别和关键词提取的准确性。
-
多阶段处理:实现分阶段查询处理流程,先进行意图识别,再进行关键词提取,最后生成优化的搜索查询。
-
查询重写:在关键词提取后,对搜索查询进行智能重写,生成更适合搜索引擎处理的查询语句。
-
结果后处理:对搜索结果进行相关性排序和过滤,优先展示与用户意图最匹配的内容。
实施建议
对于开发者而言,可以考虑以下具体实施步骤:
-
评估当前搜索助手模型的性能,收集用户查询和实际搜索结果的匹配情况数据。
-
测试不同NLP模型在意图识别和关键词提取任务上的表现,选择最适合的模型。
-
实现查询日志分析功能,持续监控和优化搜索效果。
-
考虑引入查询建议功能,当系统不确定用户意图时,可以提供多个可能的搜索方向供用户选择。
通过以上优化,可以显著提升DeepChat项目中搜索功能的效果和用户体验,使系统能够更准确地理解用户查询意图,返回更有价值的信息。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00