推荐:FlowDroid——静态数据流分析神器
FlowDroid是一款强大的静态数据流分析工具,专为Android应用和Java程序设计,旨在为研究人员和实践者提供一个可扩展的平台,用于构建自己的研究项目或产品实现。在学术界和工业界,FlowDroid已被广泛应用并广受好评。
获取FlowDroid
获取FlowDroid有多种方式,你可以通过Maven自行编译,或者直接从Github下载预编译的版本。
使用Maven
FlowDroid已上架Maven Central,只需将以下依赖添加到你的pom.xml
文件中:
<dependencies>
<!-- ... -->
<dependency>
<groupId>de.fraunhofer.sit.sse.flowdroid</groupId>
<artifactId>soot-infoflow</artifactId>
<version>2.12.0</version>
</dependency>
<!-- ... -->
</dependencies>
通过GitHub下载
Release页面提供了所有官方发布的预编译JAR文件。建议使用最新版本,除非遇到特定问题。
自行编译
如果选择自行编译,确保安装了JDK 11以上、Maven以及Soot的最新快照,首次构建时需在根目录执行:
mvn install -DskipTests
数据流跟踪的使用
FlowDroid支持命令行接口和作为库集成两种方式。对于快速查看结果,推荐使用命令行工具;若要将其作为一个组件集成进自定义项目,则应引入相关JAR文件。
命令行运行工具
运行数据流追踪的命令如下:
java -jar soot-infoflow-cmd/target/soot-infoflow-cmd-jar-with-dependencies.jar \
-a <APK File> \
-p <Android JAR folder> \
-s <SourcesSinks file>
其中,<Android JAR folder>
是Android SDK的platforms
目录,<SourcesSinks file>
定义了敏感信息源和可能泄露数据的接收点。
性能配置
FlowDroid允许根据需求调整性能。例如,-ns
选项不追踪静态字段,-ne
不追踪异常流,还可以设置时间限制以平衡精度和速度。
作为库集成
在Java或Android项目中引用FlowDroid,可以使用类似下面的代码进行简单的数据分析:
SetupApplication app = new SetupApplication(androidJarFolder, apkPath);
app.setTaintWrapper(new SummaryTaintWrapper(new LazySummaryProvider("summariesManual")));
InfoflowResults results = app.runInfoflow();
公开资料
想深入了解FlowDroid的工作原理,推荐阅读Steven Arzt的学术论文。
贡献代码
欢迎任何形式的贡献。FlowDroid采用LGPL许可,意味着你可以自由使用,但对工具的修改和扩展也需要开放源码。
联系我们
如有任何问题,可以通过邮件(Steven.Arzt@sit.fraunhofer.de)或Soot邮件列表寻求帮助。
FlowDroid以其高效、灵活的数据流分析功能,为开发者和研究人员提供了强大的工具箱,无论你是出于安全审计还是研发目的,都不容错过。现在就加入FlowDroid的世界,提升你的应用程序分析能力吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









