推荐:FlowDroid——静态数据流分析神器
FlowDroid是一款强大的静态数据流分析工具,专为Android应用和Java程序设计,旨在为研究人员和实践者提供一个可扩展的平台,用于构建自己的研究项目或产品实现。在学术界和工业界,FlowDroid已被广泛应用并广受好评。
获取FlowDroid
获取FlowDroid有多种方式,你可以通过Maven自行编译,或者直接从Github下载预编译的版本。
使用Maven
FlowDroid已上架Maven Central,只需将以下依赖添加到你的pom.xml文件中:
<dependencies>
<!-- ... -->
<dependency>
<groupId>de.fraunhofer.sit.sse.flowdroid</groupId>
<artifactId>soot-infoflow</artifactId>
<version>2.12.0</version>
</dependency>
<!-- ... -->
</dependencies>
通过GitHub下载
Release页面提供了所有官方发布的预编译JAR文件。建议使用最新版本,除非遇到特定问题。
自行编译
如果选择自行编译,确保安装了JDK 11以上、Maven以及Soot的最新快照,首次构建时需在根目录执行:
mvn install -DskipTests
数据流跟踪的使用
FlowDroid支持命令行接口和作为库集成两种方式。对于快速查看结果,推荐使用命令行工具;若要将其作为一个组件集成进自定义项目,则应引入相关JAR文件。
命令行运行工具
运行数据流追踪的命令如下:
java -jar soot-infoflow-cmd/target/soot-infoflow-cmd-jar-with-dependencies.jar \
-a <APK File> \
-p <Android JAR folder> \
-s <SourcesSinks file>
其中,<Android JAR folder>是Android SDK的platforms目录,<SourcesSinks file>定义了敏感信息源和可能泄露数据的接收点。
性能配置
FlowDroid允许根据需求调整性能。例如,-ns选项不追踪静态字段,-ne不追踪异常流,还可以设置时间限制以平衡精度和速度。
作为库集成
在Java或Android项目中引用FlowDroid,可以使用类似下面的代码进行简单的数据分析:
SetupApplication app = new SetupApplication(androidJarFolder, apkPath);
app.setTaintWrapper(new SummaryTaintWrapper(new LazySummaryProvider("summariesManual")));
InfoflowResults results = app.runInfoflow();
公开资料
想深入了解FlowDroid的工作原理,推荐阅读Steven Arzt的学术论文。
贡献代码
欢迎任何形式的贡献。FlowDroid采用LGPL许可,意味着你可以自由使用,但对工具的修改和扩展也需要开放源码。
联系我们
如有任何问题,可以通过邮件(Steven.Arzt@sit.fraunhofer.de)或Soot邮件列表寻求帮助。
FlowDroid以其高效、灵活的数据流分析功能,为开发者和研究人员提供了强大的工具箱,无论你是出于安全审计还是研发目的,都不容错过。现在就加入FlowDroid的世界,提升你的应用程序分析能力吧!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00