深度学习工作坊项目:线性模型优化原理与实践
2025-07-04 03:40:25作者:庞队千Virginia
引言
在机器学习领域,线性模型是最基础也是最重要的模型之一。本文将深入探讨如何通过优化方法训练线性回归模型,这是深度学习工作坊项目中的核心内容之一。我们将从理论到实践,逐步解析线性模型优化的关键要素。
线性模型优化基础
优化目标
在线性回归中,我们的核心目标是:
- 最小化(即优化)损失函数
- 针对线性回归参数进行优化
这与数学优化问题完全对应:
- 多项式函数优化中我们最小化f(w)
- 线性回归中我们最小化均方误差(MSE)
- 两种情况下都是针对关键参数(w或θ=(w,b))进行优化
模型优化的三大要素
优化一个模型需要三个核心组件:
-
模型定义:描述输入x到输出y的映射函数
- 线性回归中表现为y=wx+b
- 参数集合通常记为θ(包含所有权重和偏置)
-
损失函数:量化预测值与真实值的差异
- 线性回归常用均方误差(MSE)
-
优化算法:指导计算机如何调整参数以最小化损失
- 这是理解模型训练的关键所在
特别提示:当优化两个参数(w,b)时,寻找最小损失的过程就像在碗状曲面上寻找最低点。
JAX/NumPy实现详解
1. 定义线性模型
首先需要实现线性模型函数linear_model
:
- θ作为第一参数(模型参数)
- x作为第二参数(输入数据)
- 返回模型预测值
参数θ的数据类型可以是Python内置类型、NumPy类型或其组合。
def linear_model(theta, x):
w = theta['w']
b = theta['b']
return w * x + b
2. 参数初始化
使用随机数生成器初始化模型参数:
- 确保返回的参数格式能被
linear_model
接受 - 通常使用正态分布生成初始值
def initialize_linear_params():
return {'w': npr.normal(), 'b': npr.normal()}
3. 定义损失函数
实现均方误差损失函数mseloss
:
- θ作为第一参数(关键设计)
- model函数作为第二参数
- x作为第三参数
- y作为第四参数
- 返回标量值结果
def mseloss(theta, model, x, y):
y_pred = model(theta, x)
return ((y_pred - y)**2).mean()
4. 自动微分计算梯度
使用JAX的grad函数从mseloss
生成dmseloss
:
- 保持相同函数签名
- 返回θ中每个参数的梯度值
- 梯度数据结构与θ一致
from jax import grad
dmseloss = grad(mseloss)
5. 实现优化循环
编写完整的优化流程:
- 运行3000次迭代
- 记录每次迭代的损失值
- 根据梯度更新参数
def model_optimization_loop(theta, model, loss_fn, x, y, n_steps=3000):
losses = []
learning_rate = 0.01
for i in range(n_steps):
# 计算损失和梯度
current_loss = loss_fn(theta, model, x, y)
grads = dmseloss(theta, model, x, y)
# 记录损失
losses.append(current_loss)
# 更新参数
theta['w'] -= learning_rate * grads['w']
theta['b'] -= learning_rate * grads['b']
return losses, theta
6. 结果可视化与分析
训练完成后,我们可以:
- 绘制损失曲线(应呈下降趋势)
- 检查最终参数值是否接近真实值
- 评估模型性能
plt.plot(losses)
plt.xlabel('迭代次数')
plt.ylabel('均方误差')
plt.show()
print(f"优化后的参数:{theta}")
线性模型的多种表示形式
1. 矩阵表示
一维线性回归:
高维线性回归(多元线性回归):
这种表示展示了线性回归如何将任意维度的输入映射到任意维度的输出。
2. 神经网络图示
基于矩阵视图的"神经网络"图示:
这种表示方法:
- 将隐含的"恒等"函数用橙色标出
- 是深度学习入门常见的图示方式
- 表达了从输入变量到输出变量的计算图
总结
通过本文,我们系统性地学习了:
- 线性模型的三大核心组件:模型定义、损失函数和优化算法
- 使用JAX/NumPy实现线性回归的完整流程
- 自动微分在参数优化中的关键作用
- 线性模型的多种表示形式及其意义
线性回归作为最基础的机器学习模型,其优化原理和实现方式为理解更复杂的深度学习模型奠定了重要基础。掌握这些核心概念后,读者可以更容易地过渡到神经网络等更高级模型的学
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0122AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
988
585

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
288