深度学习工作坊项目:线性模型优化原理与实践
2025-07-04 21:37:30作者:庞队千Virginia
引言
在机器学习领域,线性模型是最基础也是最重要的模型之一。本文将深入探讨如何通过优化方法训练线性回归模型,这是深度学习工作坊项目中的核心内容之一。我们将从理论到实践,逐步解析线性模型优化的关键要素。
线性模型优化基础
优化目标
在线性回归中,我们的核心目标是:
- 最小化(即优化)损失函数
- 针对线性回归参数进行优化
这与数学优化问题完全对应:
- 多项式函数优化中我们最小化f(w)
- 线性回归中我们最小化均方误差(MSE)
- 两种情况下都是针对关键参数(w或θ=(w,b))进行优化
模型优化的三大要素
优化一个模型需要三个核心组件:
-
模型定义:描述输入x到输出y的映射函数
- 线性回归中表现为y=wx+b
- 参数集合通常记为θ(包含所有权重和偏置)
-
损失函数:量化预测值与真实值的差异
- 线性回归常用均方误差(MSE)
-
优化算法:指导计算机如何调整参数以最小化损失
- 这是理解模型训练的关键所在
特别提示:当优化两个参数(w,b)时,寻找最小损失的过程就像在碗状曲面上寻找最低点。
JAX/NumPy实现详解
1. 定义线性模型
首先需要实现线性模型函数linear_model:
- θ作为第一参数(模型参数)
- x作为第二参数(输入数据)
- 返回模型预测值
参数θ的数据类型可以是Python内置类型、NumPy类型或其组合。
def linear_model(theta, x):
w = theta['w']
b = theta['b']
return w * x + b
2. 参数初始化
使用随机数生成器初始化模型参数:
- 确保返回的参数格式能被
linear_model接受 - 通常使用正态分布生成初始值
def initialize_linear_params():
return {'w': npr.normal(), 'b': npr.normal()}
3. 定义损失函数
实现均方误差损失函数mseloss:
- θ作为第一参数(关键设计)
- model函数作为第二参数
- x作为第三参数
- y作为第四参数
- 返回标量值结果
def mseloss(theta, model, x, y):
y_pred = model(theta, x)
return ((y_pred - y)**2).mean()
4. 自动微分计算梯度
使用JAX的grad函数从mseloss生成dmseloss:
- 保持相同函数签名
- 返回θ中每个参数的梯度值
- 梯度数据结构与θ一致
from jax import grad
dmseloss = grad(mseloss)
5. 实现优化循环
编写完整的优化流程:
- 运行3000次迭代
- 记录每次迭代的损失值
- 根据梯度更新参数
def model_optimization_loop(theta, model, loss_fn, x, y, n_steps=3000):
losses = []
learning_rate = 0.01
for i in range(n_steps):
# 计算损失和梯度
current_loss = loss_fn(theta, model, x, y)
grads = dmseloss(theta, model, x, y)
# 记录损失
losses.append(current_loss)
# 更新参数
theta['w'] -= learning_rate * grads['w']
theta['b'] -= learning_rate * grads['b']
return losses, theta
6. 结果可视化与分析
训练完成后,我们可以:
- 绘制损失曲线(应呈下降趋势)
- 检查最终参数值是否接近真实值
- 评估模型性能
plt.plot(losses)
plt.xlabel('迭代次数')
plt.ylabel('均方误差')
plt.show()
print(f"优化后的参数:{theta}")
线性模型的多种表示形式
1. 矩阵表示
一维线性回归:

高维线性回归(多元线性回归):

这种表示展示了线性回归如何将任意维度的输入映射到任意维度的输出。
2. 神经网络图示
基于矩阵视图的"神经网络"图示:

这种表示方法:
- 将隐含的"恒等"函数用橙色标出
- 是深度学习入门常见的图示方式
- 表达了从输入变量到输出变量的计算图
总结
通过本文,我们系统性地学习了:
- 线性模型的三大核心组件:模型定义、损失函数和优化算法
- 使用JAX/NumPy实现线性回归的完整流程
- 自动微分在参数优化中的关键作用
- 线性模型的多种表示形式及其意义
线性回归作为最基础的机器学习模型,其优化原理和实现方式为理解更复杂的深度学习模型奠定了重要基础。掌握这些核心概念后,读者可以更容易地过渡到神经网络等更高级模型的学
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
226
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
暂无简介
Dart
596
130
React Native鸿蒙化仓库
JavaScript
233
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
仓颉编译器源码及 cjdb 调试工具。
C++
123
627
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
361
2.58 K