高斯泼溅项目中的矩阵导数计算解析
在图形学领域的高斯泼溅(Gaussian Splatting)技术实现中,矩阵导数的计算是一个关键但容易被误解的技术点。本文将以graphdeco-inria/gaussian-splatting项目中的具体实现为例,深入解析3D高斯分布参数反向传播过程中涉及的矩阵导数计算原理。
问题背景
在3D高斯泼溅技术中,每个高斯分布由协方差矩阵Σ描述,该矩阵通过变换矩阵M计算得到,关系式为Σ = MMᵀ。在反向传播过程中,需要计算损失函数L对M的导数∂L/∂M,这涉及到矩阵对矩阵的导数计算。
数学原理
严格来说,∂Σ/∂M是一个四阶张量,无法直接用矩阵形式表示。但在实际实现中,我们可以利用Frobenius内积的性质来简化计算过程。Frobenius内积定义为两个矩阵对应元素相乘后求和,记作⟨A,B⟩=tr(AᵀB)。
根据链式法则,损失函数对M的导数可以表示为: ∂L/∂x = ⟨∂L/∂Σ, ∂Σ/∂x⟩ = ⟨∂L/∂Σ, ∂(MMᵀ)/∂x⟩
展开后可以得到: ∂L/∂x = ⟨∂L/∂Σ, (∂M/∂x)Mᵀ⟩ + ⟨∂L/∂Σ, M(∂Mᵀ/∂x)⟩
利用Frobenius内积的性质和Σ的对称性,可以进一步简化为: ∂L/∂M = 2(∂L/∂Σ)M
实现细节
在实际代码实现中,考虑到内存布局和计算效率,通常会采用行优先(row-major)的存储方式。这会导致矩阵乘法顺序的调整,因此在代码中看到的可能是Mᵀ(∂L/∂Σ)的形式,而不是理论推导中的(∂L/∂Σ)M。
技术意义
这种矩阵导数的简化计算方式不仅适用于高斯泼溅技术,在计算机视觉和图形学的许多其他领域也有广泛应用。理解这种计算方法有助于:
- 更高效地实现基于物理的渲染算法
- 优化神经网络中涉及矩阵运算的反向传播过程
- 设计新的可微分图形学算法
实践建议
对于实际实现,开发者需要注意:
- 矩阵存储顺序对计算结果的影响
- 协方差矩阵对称性的利用可以优化计算
- 现代GPU架构对这类矩阵运算的优化特性
通过深入理解这些数学原理和实现细节,开发者可以更好地优化高斯泼溅技术的性能,并扩展到更复杂的图形学应用中。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00