高斯泼溅项目中的矩阵导数计算解析
在图形学领域的高斯泼溅(Gaussian Splatting)技术实现中,矩阵导数的计算是一个关键但容易被误解的技术点。本文将以graphdeco-inria/gaussian-splatting项目中的具体实现为例,深入解析3D高斯分布参数反向传播过程中涉及的矩阵导数计算原理。
问题背景
在3D高斯泼溅技术中,每个高斯分布由协方差矩阵Σ描述,该矩阵通过变换矩阵M计算得到,关系式为Σ = MMᵀ。在反向传播过程中,需要计算损失函数L对M的导数∂L/∂M,这涉及到矩阵对矩阵的导数计算。
数学原理
严格来说,∂Σ/∂M是一个四阶张量,无法直接用矩阵形式表示。但在实际实现中,我们可以利用Frobenius内积的性质来简化计算过程。Frobenius内积定义为两个矩阵对应元素相乘后求和,记作⟨A,B⟩=tr(AᵀB)。
根据链式法则,损失函数对M的导数可以表示为: ∂L/∂x = ⟨∂L/∂Σ, ∂Σ/∂x⟩ = ⟨∂L/∂Σ, ∂(MMᵀ)/∂x⟩
展开后可以得到: ∂L/∂x = ⟨∂L/∂Σ, (∂M/∂x)Mᵀ⟩ + ⟨∂L/∂Σ, M(∂Mᵀ/∂x)⟩
利用Frobenius内积的性质和Σ的对称性,可以进一步简化为: ∂L/∂M = 2(∂L/∂Σ)M
实现细节
在实际代码实现中,考虑到内存布局和计算效率,通常会采用行优先(row-major)的存储方式。这会导致矩阵乘法顺序的调整,因此在代码中看到的可能是Mᵀ(∂L/∂Σ)的形式,而不是理论推导中的(∂L/∂Σ)M。
技术意义
这种矩阵导数的简化计算方式不仅适用于高斯泼溅技术,在计算机视觉和图形学的许多其他领域也有广泛应用。理解这种计算方法有助于:
- 更高效地实现基于物理的渲染算法
- 优化神经网络中涉及矩阵运算的反向传播过程
- 设计新的可微分图形学算法
实践建议
对于实际实现,开发者需要注意:
- 矩阵存储顺序对计算结果的影响
- 协方差矩阵对称性的利用可以优化计算
- 现代GPU架构对这类矩阵运算的优化特性
通过深入理解这些数学原理和实现细节,开发者可以更好地优化高斯泼溅技术的性能,并扩展到更复杂的图形学应用中。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00