Highlight项目优化:将事件处理迁移至Kafka工作队列
在Highlight项目的开发过程中,团队发现推送负载存在延迟问题。经过深入分析,发现这是由于ClickHouse数据库的背压(back pressure)以及直接在处理过程中调用"wait_for_async_insert": 1
参数所导致的。本文将详细介绍这一问题的技术背景、解决方案以及实施细节。
问题背景分析
当前架构中,事件处理流程存在以下关键问题:
-
同步等待瓶颈:在处理推送负载时,系统直接调用ClickHouse的异步插入操作并设置
wait_for_async_insert
为1,这意味着处理器必须等待插入操作完成才能继续处理下一个请求。 -
背压效应:当ClickHouse处理能力达到上限时,会导致上游系统(事件处理器)的积压,形成背压效应,进而影响整个系统的响应速度。
-
可靠性权衡:虽然将
wait_for_async_insert
设置为0可以缓解延迟问题,但这会导致系统无法及时获知插入错误,可能造成事件丢失,这不是一个理想的解决方案。
技术解决方案
团队决定采用Kafka工作队列作为中间层来解决这一问题,具体架构调整如下:
-
异步处理架构:将事件处理流程拆分为两个独立阶段:
- 第一阶段:快速接收推送负载并写入Kafka队列
- 第二阶段:由Kafka消费者批量处理事件并写入ClickHouse
-
批量写入优化:Kafka消费者可以积累一定数量的事件或等待特定时间窗口后,批量写入ClickHouse,显著减少数据库写入压力。
-
背压隔离:Kafka作为缓冲层,可以吸收ClickHouse处理速度波动带来的影响,防止背压传导至前端系统。
实现细节
生产者端优化
在事件接收端,系统只需完成以下工作:
- 验证事件数据有效性
- 序列化事件数据
- 快速写入Kafka主题
这种设计使得事件接收服务可以保持极高的吞吐量和低延迟。
消费者端设计
Kafka消费者服务采用以下策略:
- 批量消费:配置适当的
max.poll.records
参数控制每次拉取的消息数量 - 批量插入:积累足够数量的事件后执行ClickHouse批量插入
- 错误处理:实现完善的重试机制和死信队列处理
监控与告警
新架构下需要特别注意:
- Kafka队列积压监控
- 消费者延迟监控
- ClickHouse写入错误率监控
预期收益
这一架构调整将带来以下改进:
- 降低端到端延迟:推送负载处理不再受数据库写入速度影响
- 提高系统吞吐量:批量写入显著减少数据库负载
- 增强系统可靠性:完善的错误处理机制确保数据不丢失
- 更好的可扩展性:可以独立扩展消费者服务应对写入压力
总结
通过引入Kafka作为事件处理中间件,Highlight项目有效解决了数据库写入导致的系统延迟问题。这种架构不仅解决了当前性能瓶颈,还为系统未来的扩展奠定了良好基础。这种生产者-消费者模式与批量处理相结合的设计,对于类似的高吞吐量数据处理场景具有很好的参考价值。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









