AleoNet/snarkOS v3.6.0版本深度解析:共识升级与性能优化
Aleo是一个专注于隐私保护的区块链平台,其核心组件snarkOS作为节点实现,支撑着整个网络的运行。最新发布的v3.6.0版本带来了多项重要更新,包括共识机制的重大改进、性能优化以及开发者体验的提升。
共识机制升级:迈向30个验证节点
v3.6.0版本最引人注目的变化是对共识机制的升级。经过充分的负载测试,验证节点数量将从现有规模增加到30个。这一改变基于AleoBFT共识算法(一种基于Bullshark的变体),预计将使Aleo网络的吞吐量提升至每秒约65笔交易。
此次共识升级将在不同网络分阶段实施:
- Canary网络:区块高度5,780,000(约2025年4月11日)
- Testnet测试网:区块高度6,765,000(约2025年4月15日)
- Mainnet主网:区块高度7,060,000(约2025年5月4日)
重要提示:验证节点必须及时升级,否则可能面临分叉风险;客户端也需要升级以避免停止运行。
验证节点性能优化
v3.6.0版本对验证节点的性能进行了多方面的优化:
-
初始化性能提升:改进了程序加载机制,避免了递归加载同一程序导致的指数级减速;通过增加并行化程度,CDN数据获取速度显著提高。
-
运行时优化:验证节点委员会的构建成本较高,现在在更多地方进行了缓存;部署合成速度提升了近2倍,这得益于静态分配向量和其他内存优化。
-
网络稳定性增强:对等节点连接和同步逻辑进行了全面改进,提高了网络稳定性。
-
支出限制机制:引入了交易支出限制功能,有效控制了最大区块时间。
验证节点存储配置改进
修复了交易缓存的存储路径配置问题,确保其存储在--storage标志指定的位置。此前,它总是存储在默认的Aleo账本目录中。使用自定义存储路径的验证节点应检查是否备份了整个指定文件夹。
证明者支持增强
新增了对CUDA的支持,这将显著提升snarkOS证明者的运行效率,为GPU加速提供了开箱即用的支持。
开发者体验改进
-
锁追踪功能:新增了锁追踪功能,可以记录当前持有的锁,这在排查死锁问题时非常有用。
-
文档完善:修复了Cargo文档编译问题,并对代码库的许多部分进行了更详细的文档说明,大大改善了新贡献者的开发体验。
-
测试自动化:开发了回归测试套件,确保所有已部署程序在新版本snarkVM上保持有效;现在每个PR都会自动启动一个小型开发网络进行测试,以更自动化的方式发现问题。
监控与API改进
初步实现了验证节点遥测功能,用于跟踪其他验证节点的指标和性能。这使得验证节点能够更好地监控其对等节点(及自身)的行为,并通过连接或链下警报做出相应反应。
该功能目前通过新的遥测标志可选使用,引入了参与度评分的基本概念,可通过日志和新的REST API访问。
总结
AleoNet/snarkOS v3.6.0版本是一次重要的升级,不仅扩大了网络规模,还通过多项优化提升了整体性能。共识机制的改进为未来进一步扩展奠定了基础,而各种性能优化和开发者工具则使整个生态系统更加健壮和易用。随着这些改进的逐步部署,Aleo网络将能够支持更高的交易吞吐量,同时保持其核心的隐私保护特性。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









