Turing.jl v0.38.0版本发布:动态概率编程的重大升级
Turing.jl是Julia生态系统中领先的概率编程语言(PPL)框架,它允许用户使用灵活的语法构建复杂的概率模型,并支持多种高效的推断算法。本次发布的v0.38.0版本带来了多项重要改进,特别是在子模型处理和Gibbs采样器方面有显著增强。
动态概率编程的重大改进
本次升级中最重要的变化是DynamicPPL兼容性提升至0.36版本,这带来了子模型前缀处理和条件设置的重大改进。在概率编程中,子模型是构建复杂层次模型的基础组件,新版本使得子模型中的变量表示更加直观和一致。
在之前的版本中,子模型变量会以类似var"a.x"的形式表示,而现在则采用更自然的a.x形式。这种改变不仅使变量名更易读,还保持了与Julia语言本身对象访问语法的一致性。例如:
@model inner() = x ~ Normal()
@model outer() = a ~ to_submodel(inner())
现在keys(VarInfo(outer()))将返回[@varname(a.x)]而非之前的[@varname(var"a.x")]。这种表示方式的改进使得模型结构更加清晰,调试也更加方便。
条件设置的灵活性提升
新版本还改进了条件设置的处理方式。现在用户可以选择在外部模型或内部模型上设置条件,这种灵活性使得模型构建更加直观。例如:
# 在外部模型上设置条件
outer() | (@varname(a.x) => 1.0)
# 在内部模型上设置条件
inner() | (@varname(x) => 1.0)
特别值得注意的是,即使在内部模型上设置条件后,再将其作为子模型使用时,这些条件仍然会正确应用。这种一致性保证大大简化了复杂模型的构建过程。
Gibbs采样器的功能扩展
Gibbs采样是马尔可夫链蒙特卡洛(MCMC)方法中的重要算法,特别适合处理高维参数空间。本次版本中,Turing.jl的Gibbs采样器现在支持更复杂的变量名形式,包括数组索引和字段访问。
例如,现在可以这样使用Gibbs采样器:
@model function f()
    x = Vector{Float64}(undef, 2)
    x[1] ~ Normal()
    return x[2] ~ Normal()
end
sample(f(), Gibbs(@varname(x[1]) => MH(), @varname(x[2]) => MH()), 100)
这种改进使得Gibbs采样能够处理更复杂的模型结构,特别是那些包含数组或复合类型参数的模型。性能方面,简单变量名(如x)的处理保持了原有的高效性,而带有字段访问的变量名(如x.a)也能达到相近的性能。虽然带有索引的变量名(如x[1])可能在性能上略有下降,但这已经是一个显著的进步,因为之前这些情况根本无法处理。
其他改进
除了上述主要变化外,本次发布还包括:
- 优化函数增加了
check_model参数,提供了更多的控制选项 - 文档字符串更新以支持非标识符形式的变量名
 - 自动分配PR的工作流程改进
 
这些改进共同使得Turing.jl在构建复杂概率模型时更加灵活和强大,同时也保持了框架的易用性和性能优势。对于概率编程和贝叶斯统计的研究人员和实践者来说,这些增强功能将显著提升建模体验和效率。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00