Turbo框架中防止元素在Morph操作中被移除的解决方案
问题背景
在使用Turbo框架开发动态列表时,开发者经常遇到一个典型场景:需要维护一个按时间倒序排列的最近10项列表。当新项被创建时,页面通过Turbo的morph机制更新,新项会出现在列表顶部,而最旧的项则会被移除。然而在某些业务场景下,开发者希望保留所有历史项,仅追加新项而不移除旧项。
初步尝试与问题分析
开发者最初尝试了两种解决方案:
-
data-turbo-permanent属性:为每个列表项添加此属性确实可以防止元素被移除,但会导致列表顺序被打乱。这是因为Turbo的morph机制会保留这些永久元素,但无法保证它们在DOM中的原始顺序。
-
turbo:before-morph-element事件:尝试通过监听此事件来判断元素是否将被移除,但发现event.detail.newElement始终为undefined,这使得判断逻辑无法正常工作。
深入分析后发现,问题的根源在于使用了Turbo Frame和Stream Action来实现分页加载功能。在这种实现方式下,每次更新时Turbo会先清空列表容器,然后通过stream action重新追加所有项,这解释了为什么newElement始终为undefined。
解决方案
经过探索,最终找到了一个综合解决方案:
-
保留现有元素:为每个列表项添加
data-turbo-permanent属性,确保它们不会被自动移除。 -
处理Stream Action行为:Turbo的"append" stream action会在追加新元素前移除所有公共元素,这是导致顺序混乱的原因。需要自定义处理这一行为。
-
自定义排序逻辑:由于直接重新渲染整个容器会失去分页的优势,因此实现了一个自定义的stream action,在元素被追加后对它们进行排序,而不是完全重新渲染。
技术要点
-
Turbo的morph机制:理解Turbo如何比较和更新DOM是解决此类问题的关键。Turbo会尝试最小化DOM操作,但有时需要干预其默认行为。
-
永久元素的使用:
data-turbo-permanent属性可以防止元素被意外移除,但需要注意其对DOM操作的影响。 -
自定义Stream Action:当内置的stream action无法满足需求时,扩展Turbo的功能是必要的。这需要对Turbo的内部机制有深入理解。
最佳实践建议
-
谨慎使用永久元素:虽然可以防止元素被移除,但可能带来其他副作用,如顺序问题。
-
考虑性能影响:对于大型列表,完全重新渲染可能影响性能,分页和局部更新是更好的选择。
-
测试不同场景:确保解决方案在各种用户交互下都能正常工作,包括初始加载、新增项和分页加载。
通过这种综合方法,开发者可以在保留Turbo高效更新的同时,精确控制DOM元素的行为和顺序,满足特定的业务需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00