Subliminal 2.3.0版本发布:智能字幕下载工具的重大更新
Subliminal是一个基于Python开发的智能字幕下载工具,它能够自动为视频文件匹配和下载合适的字幕。作为一个开源项目,Subliminal通过集成多个字幕提供商的服务,为用户提供高效、准确的字幕获取体验。最新发布的2.3.0版本带来了一系列重要改进和新功能,显著提升了工具的使用体验和功能性。
核心功能改进
2.3.0版本对文件年龄计算逻辑进行了优化,现在默认会同时考虑文件的创建时间和修改时间来确定文件的新旧程度。这一改变使得字幕匹配更加精准,特别是在处理那些被修改过但内容未变的视频文件时。用户仍然可以通过--no-use-ctime选项恢复到仅使用修改时间的旧有行为。
在视频信息提取方面,项目团队做出了重大架构调整,用knowit替代了原有的enzyme库。knowit能够利用多种外部工具(如mediainfo、ffmpeg和mkvmerge)来获取视频的帧率、时长和字幕信息,在没有这些工具的情况下才会回退到enzyme。这一改进显著提升了视频信息提取的准确性和可靠性。
新增功能亮点
本次更新引入了多项实用新功能,其中最值得注意的是:
-
新增了
subtitles属性到Video类中,使得开发者能够更方便地获取视频的字幕信息。 -
增加了对独立Provider的支持,通过
Provider.hash_video静态方法,开发者现在可以创建不依赖于Subliminal核心功能的独立字幕提供器。 -
新增了Mock Provider,为测试和开发提供了更大的灵活性。
-
在CLI方面,新增了
--subtitle-format选项,允许用户强制转换字幕格式;--skip-wrong-fps选项可以自动跳过帧率不匹配的字幕;以及精细控制的--force-embedded-subtitles和--force-external-subtitles选项。
提供商更新与优化
2.3.0版本对现有的字幕提供商进行了多项优化:
-
OpenSubtitlesCom提供商现在能够避免重复字幕的下载,提高了效率。
-
新增了BSPlayer和Subtitulamos两个新的字幕提供商,进一步扩展了字幕来源。
-
移除了对Addic7ed和Napiprojekt提供商的默认禁用,现在这些提供商可以通过配置正常使用。
开发者体验提升
对于开发者而言,2.3.0版本带来了多项改进:
-
移除了default_providers和default_refiners变量,改为使用
get_default_providers()和get_default_refiners()函数,提供了更大的灵活性。 -
现在可以直接通过
python -m subliminal命令运行工具,简化了开发调试流程。 -
新增了prepare_tests.py脚本,可以预先下载测试数据,避免了重复下载,提高了测试效率。
-
项目现在使用hatch构建系统和hatch-vcs,改善了构建流程。
兼容性与环境要求
2.3.0版本不再支持Python 3.8,新增了对Python 3.13的支持。rarfile现在被设为可选依赖,用户可以通过pip install subliminal[rar]来安装相关功能。在Windows和MacOS上,libmediainfo会通过pymediainfo自动安装,而Linux用户则需要通过系统包管理器手动安装。
总结
Subliminal 2.3.0版本是一次全面的功能升级和优化,不仅增强了核心功能,还引入了多项实用新特性,改进了开发者体验。这些改进使得Subliminal在字幕匹配的准确性、使用的便捷性和功能的丰富性方面都达到了新的高度。无论是普通用户还是开发者,都能从这个版本中获得更好的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00