Qwen模型在vLLM框架中的正确使用方式解析
引言
在大型语言模型的实际部署中,vLLM框架因其高效的推理能力而广受欢迎。然而,在使用Qwen系列模型时,开发者经常会遇到关于如何正确处理输入格式的困惑。本文将深入剖析Qwen模型在vLLM框架中的正确使用方法,帮助开发者避免常见的错误。
Qwen模型版本差异
Qwen模型目前存在两个主要版本分支,它们在处理方式上有显著区别:
-
Qwen 1.0系列:这一版本的模型需要使用
trust_remote_code=True
参数加载,其tokenizer不支持apply_chat_template
方法。对于对话模型(Qwen-Chat),开发者需要手动按照ChatML格式构造输入。 -
Qwen 1.5系列:采用了与Hugging Face生态更兼容的设计,tokenizer内置了
apply_chat_template
方法,可以直接使用标准化的方式处理对话输入。
基础模型与对话模型的区别
理解基础模型和对话模型的区别至关重要:
- 基础模型:仅支持文本续写功能,输入什么就继续生成什么,不需要特殊模板
- 对话模型:需要特定的对话模板(如ChatML)来组织对话历史,模型才能理解对话上下文
vLLM框架中的使用实践
对于Qwen 1.0系列
使用Qwen 1.0的对话模型时,必须手动构造ChatML格式的输入:
- 按照
<|im_start|>system
、<|im_start|>user
、<|im_start|>assistant
等标记组织对话 - 将构造好的文本传递给tokenizer进行编码
- 将编码后的token IDs输入vLLM的generate方法
对于Qwen 1.5系列
得益于与Hugging Face生态的深度整合,Qwen 1.5提供了更标准化的使用方式:
- 直接使用tokenizer的
apply_chat_template
方法自动构造符合ChatML格式的输入 - 该方法会自动处理对话历史的组织和特殊标记的添加
- 生成的文本可以直接传递给vLLM进行推理
最佳实践建议
-
明确模型类型:首先确认使用的是基础模型还是对话模型,以及具体的Qwen版本
-
版本适配:
- Qwen 1.0:手动构造ChatML输入
- Qwen 1.5:优先使用
apply_chat_template
-
性能考量:vLLM框架的优势在于高效推理,正确的输入格式处理不会影响其性能优势
-
未来兼容性:随着生态发展,建议新项目优先采用Qwen 1.5及更高版本,以获得更好的社区支持
常见问题解答
Q:为什么有时候需要手动构造输入,有时候又可以用apply_chat_template?
A:这取决于具体的Qwen版本。Qwen 1.0由于开发时间较早,没有实现标准化的模板应用方法,而Qwen 1.5则完全遵循了Hugging Face的最新标准。
Q:如果错误地使用了不匹配的输入格式会怎样?
A:模型可能无法正确理解输入意图,生成质量会显著下降。对于对话模型,缺少必要的ChatML标记会导致模型无法区分系统指令、用户输入和助手回复。
结论
正确使用Qwen模型在vLLM框架中进行推理,关键在于理解模型版本差异和类型区别。随着Hugging Face生态的标准化进程,推荐开发者优先使用Qwen 1.5及以上版本,并充分利用apply_chat_template
方法,这样可以获得最佳的开发体验和社区支持。对于仍在使用Qwen 1.0的项目,则需要严格按照ChatML规范手动构造输入,确保模型能够正确理解对话上下文。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









