Rapidsai/cugraph项目中的异构邻居采样功能升级
在Rapidsai/cugraph图计算库的最新开发中,团队针对C++邻居采样功能进行了重要升级,增加了对异构图(heterogeneous graph)的支持。这一改进使得用户能够更灵活地处理包含多种节点和边类型的复杂图结构。
背景与需求
传统的邻居采样算法通常假设图中的所有边都是同质的,即它们属于同一类型。然而,在现实世界的许多应用场景中,图数据往往包含多种类型的节点和边,例如社交网络中可能同时存在"关注"、"点赞"、"评论"等多种关系类型。
cugraph原有的Uniform(均匀)和Biased(有偏)邻居采样实现仅支持同构图(homogeneous graph),无法针对不同类型的边应用不同的采样策略。这在处理异构数据时会造成信息损失或采样偏差。
技术实现方案
本次升级的核心是在C++层的邻居采样算法中引入异构扇出(heterogeneous fanout)支持。具体实现采用了以下技术路线:
-
边掩码技术:对于每种边类型,算法会创建相应的掩码(mask)来过滤出特定类型的边,然后在这些边子集上执行采样操作。这种方法虽然简单直接,但能确保不同类型边的采样过程相互独立。
-
分阶段采样:系统会按照用户指定的不同类型边的采样数量(fanout)依次处理每种边类型。例如,对于一个包含三种边类型的图,算法会分别执行三次采样过程,每次只处理一种特定类型的边。
-
性能优化预留:当前实现采用了较为保守的策略,未来将通过专门的优化工作(如并行处理不同边类型的采样)来提升性能。
功能特点
升级后的邻居采样功能具有以下显著特点:
-
灵活配置:用户可以针对不同类型的边指定不同的采样数量。例如,在社交网络分析中,可以为"关注"关系设置较大的采样数,而为"点赞"关系设置较小的采样数。
-
算法兼容:该功能同时支持Uniform和Biased两种采样策略,保持了原有算法的特性,只是扩展到了异构场景。
-
无缝集成:新功能与cugraph现有API保持兼容,用户只需通过简单的参数调整即可启用异构采样。
应用价值
这一改进为以下场景提供了更好的支持:
-
推荐系统:可以针对用户-商品交互图中的浏览、购买、收藏等不同行为类型应用差异化的采样策略。
-
知识图谱:能够处理实体间的多种关系类型,保留图谱的语义信息。
-
社交网络分析:区分好友关系、关注关系、互动关系等不同类型的社交连接。
未来展望
虽然当前实现已经满足了基本功能需求,但团队已经规划了进一步的优化方向,包括减少边掩码操作的开销、实现不同类型边的并行采样等。这些优化将使异构邻居采样在大规模图数据上具有更高的效率。
这一功能的加入标志着cugraph在处理复杂图结构能力上的重要进步,为图机器学习等应用场景提供了更强大的基础支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00