Spring AI 项目中OpenAI响应格式配置问题的分析与解决
在Spring AI项目的最新版本中,开发人员发现了一个关于OpenAI API响应格式配置的有趣问题。这个问题涉及到如何正确配置JSON Schema来约束OpenAI的响应输出格式。
问题背景
Spring AI项目为开发者提供了与OpenAI API交互的便捷方式。在1.0.0-M8版本中,文档指出可以通过配置文件来设置OpenAI的response_format参数,包括指定JSON Schema来约束返回数据的结构。然而,当开发者按照文档配置后,却收到了OpenAI API返回的400错误,提示"Unknown parameter: 'response_format.schema'"。
技术分析
深入分析问题根源,我们发现这与Spring AI内部对ResponseFormat类的处理方式有关。这个类承担了双重职责:
- 作为配置属性的反序列化目标
- 作为OpenAI API请求体的组成部分
在实现上,ResponseFormat类内部有一个schema字段,它会被用来构建最终的jsonSchema对象。问题在于,当这个schema字段被设置后,它也会被包含在最终发送给OpenAI API的请求中,而OpenAI API并不识别这个参数。
解决方案
经过社区讨论,确定了两种解决方案:
- 临时解决方案:通过编程方式构建
ResponseFormat对象,直接设置jsonSchema而绕过schema字段的设置。
ChatClient chatClient = builder
.defaultOptions(OpenAiChatOptions.builder()
.responseFormat(ResponseFormat.builder()
.type(ResponseFormat.Type.JSON_SCHEMA)
.jsonSchema(ResponseFormat.JsonSchema.builder()
.schema("{\"type\":\"object\",...}")
.strict(true)
.build())
.build())
.build())
.build();
- 永久修复方案:在
ResponseFormat类中为schema字段添加@JsonIgnore注解,确保它不会被序列化到API请求中。这个方案已经被合并到主分支中。
技术启示
这个案例给我们几个重要的技术启示:
-
DTO设计原则:当一个类同时用于配置反序列化和API请求时,需要特别注意字段的序列化行为。
-
API兼容性:在封装第三方API时,必须严格遵循其参数规范,任何额外的参数都可能导致请求失败。
-
配置与运行时分离:配置阶段使用的数据结构可能需要与运行时API请求的数据结构有所不同,需要考虑如何优雅地转换。
最佳实践建议
对于需要在Spring AI中使用OpenAI JSON Schema功能的开发者,建议:
- 如果使用最新版本,可以直接通过配置文件设置
- 如果使用1.0.0-M8版本,可以采用编程式配置作为临时解决方案
- 在定义复杂JSON Schema时,注意验证Schema本身的正确性
- 考虑将大型Schema定义放在单独的文件中,而不是直接写在配置里
这个问题展示了开源社区如何协作解决技术问题的典型过程,从问题发现、分析到最终修复,体现了Spring生态系统的活力和响应能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00