Spring AI 项目中OpenAI响应格式配置问题的分析与解决
在Spring AI项目的最新版本中,开发人员发现了一个关于OpenAI API响应格式配置的有趣问题。这个问题涉及到如何正确配置JSON Schema来约束OpenAI的响应输出格式。
问题背景
Spring AI项目为开发者提供了与OpenAI API交互的便捷方式。在1.0.0-M8版本中,文档指出可以通过配置文件来设置OpenAI的response_format参数,包括指定JSON Schema来约束返回数据的结构。然而,当开发者按照文档配置后,却收到了OpenAI API返回的400错误,提示"Unknown parameter: 'response_format.schema'"。
技术分析
深入分析问题根源,我们发现这与Spring AI内部对ResponseFormat类的处理方式有关。这个类承担了双重职责:
- 作为配置属性的反序列化目标
- 作为OpenAI API请求体的组成部分
在实现上,ResponseFormat类内部有一个schema字段,它会被用来构建最终的jsonSchema对象。问题在于,当这个schema字段被设置后,它也会被包含在最终发送给OpenAI API的请求中,而OpenAI API并不识别这个参数。
解决方案
经过社区讨论,确定了两种解决方案:
- 临时解决方案:通过编程方式构建
ResponseFormat对象,直接设置jsonSchema而绕过schema字段的设置。
ChatClient chatClient = builder
.defaultOptions(OpenAiChatOptions.builder()
.responseFormat(ResponseFormat.builder()
.type(ResponseFormat.Type.JSON_SCHEMA)
.jsonSchema(ResponseFormat.JsonSchema.builder()
.schema("{\"type\":\"object\",...}")
.strict(true)
.build())
.build())
.build())
.build();
- 永久修复方案:在
ResponseFormat类中为schema字段添加@JsonIgnore注解,确保它不会被序列化到API请求中。这个方案已经被合并到主分支中。
技术启示
这个案例给我们几个重要的技术启示:
-
DTO设计原则:当一个类同时用于配置反序列化和API请求时,需要特别注意字段的序列化行为。
-
API兼容性:在封装第三方API时,必须严格遵循其参数规范,任何额外的参数都可能导致请求失败。
-
配置与运行时分离:配置阶段使用的数据结构可能需要与运行时API请求的数据结构有所不同,需要考虑如何优雅地转换。
最佳实践建议
对于需要在Spring AI中使用OpenAI JSON Schema功能的开发者,建议:
- 如果使用最新版本,可以直接通过配置文件设置
- 如果使用1.0.0-M8版本,可以采用编程式配置作为临时解决方案
- 在定义复杂JSON Schema时,注意验证Schema本身的正确性
- 考虑将大型Schema定义放在单独的文件中,而不是直接写在配置里
这个问题展示了开源社区如何协作解决技术问题的典型过程,从问题发现、分析到最终修复,体现了Spring生态系统的活力和响应能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00