Altair 可视化教程与示例
项目介绍
Altair 是一个基于 Python 的声明式统计可视化库,它使用 Vega-Lite 作为其底层可视化规范。Altair 的设计理念是通过简洁的 API 来创建美观且交互式的可视化图表。altair_notebooks 项目是 Altair 官方提供的教程和示例 Jupyter Notebooks 集合,旨在帮助用户快速上手并深入理解 Altair 的使用。
项目快速启动
安装 Altair
首先,确保你已经安装了 Python 和 Jupyter Notebook。然后,使用 pip 安装 Altair:
pip install altair
启动 Jupyter Notebook
启动 Jupyter Notebook 以开始使用 Altair:
jupyter notebook
创建第一个 Altair 图表
在 Jupyter Notebook 中创建一个新的 Python 文件,并输入以下代码:
import altair as alt
from vega_datasets import data
# 加载示例数据集
cars = data.cars()
# 创建图表
chart = alt.Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin'
)
# 显示图表
chart
运行上述代码后,你将看到一个基于汽车数据集的散点图。
应用案例和最佳实践
案例1:数据探索
Altair 非常适合用于数据探索。以下是一个使用 Altair 进行数据探索的示例:
import altair as alt
from vega_datasets import data
# 加载示例数据集
stocks = data.stocks()
# 创建图表
chart = alt.Chart(stocks).mark_line().encode(
x='date',
y='price',
color='symbol'
)
# 显示图表
chart
案例2:交互式图表
Altair 支持创建交互式图表。以下是一个使用 Altair 创建交互式图表的示例:
import altair as alt
from vega_datasets import data
# 加载示例数据集
movies = data.movies()
# 创建图表
chart = alt.Chart(movies).mark_bar().encode(
x='Major_Genre',
y='count()',
color='Major_Genre'
).interactive()
# 显示图表
chart
典型生态项目
1. Vega-Lite
Vega-Lite 是 Altair 的底层可视化规范,它提供了一种简洁的方式来描述统计可视化。Vega-Lite 的语法简洁且易于理解,非常适合用于快速创建可视化图表。
2. Jupyter Notebook
Jupyter Notebook 是一个开源的 Web 应用程序,允许你创建和共享包含实时代码、方程、可视化和叙述性文本的文档。Altair 与 Jupyter Notebook 无缝集成,使得数据可视化变得更加简单和直观。
3. Pandas
Pandas 是一个强大的数据处理和分析库,广泛用于数据科学和数据分析。Altair 可以与 Pandas 无缝集成,直接使用 Pandas 的 DataFrame 作为数据源来创建可视化图表。
4. Matplotlib
Matplotlib 是 Python 的一个绘图库,提供了广泛的绘图功能。虽然 Altair 提供了更简洁的可视化 API,但在某些情况下,你可能需要结合 Matplotlib 来实现更复杂的需求。
通过这些生态项目,Altair 可以与现有的数据处理和分析工具无缝集成,帮助你更高效地进行数据可视化工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00