首页
/ Altair 可视化教程与示例

Altair 可视化教程与示例

2024-09-18 16:41:51作者:伍霜盼Ellen

项目介绍

Altair 是一个基于 Python 的声明式统计可视化库,它使用 Vega-Lite 作为其底层可视化规范。Altair 的设计理念是通过简洁的 API 来创建美观且交互式的可视化图表。altair_notebooks 项目是 Altair 官方提供的教程和示例 Jupyter Notebooks 集合,旨在帮助用户快速上手并深入理解 Altair 的使用。

项目快速启动

安装 Altair

首先,确保你已经安装了 Python 和 Jupyter Notebook。然后,使用 pip 安装 Altair:

pip install altair

启动 Jupyter Notebook

启动 Jupyter Notebook 以开始使用 Altair:

jupyter notebook

创建第一个 Altair 图表

在 Jupyter Notebook 中创建一个新的 Python 文件,并输入以下代码:

import altair as alt
from vega_datasets import data

# 加载示例数据集
cars = data.cars()

# 创建图表
chart = alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin'
)

# 显示图表
chart

运行上述代码后,你将看到一个基于汽车数据集的散点图。

应用案例和最佳实践

案例1:数据探索

Altair 非常适合用于数据探索。以下是一个使用 Altair 进行数据探索的示例:

import altair as alt
from vega_datasets import data

# 加载示例数据集
stocks = data.stocks()

# 创建图表
chart = alt.Chart(stocks).mark_line().encode(
    x='date',
    y='price',
    color='symbol'
)

# 显示图表
chart

案例2:交互式图表

Altair 支持创建交互式图表。以下是一个使用 Altair 创建交互式图表的示例:

import altair as alt
from vega_datasets import data

# 加载示例数据集
movies = data.movies()

# 创建图表
chart = alt.Chart(movies).mark_bar().encode(
    x='Major_Genre',
    y='count()',
    color='Major_Genre'
).interactive()

# 显示图表
chart

典型生态项目

1. Vega-Lite

Vega-Lite 是 Altair 的底层可视化规范,它提供了一种简洁的方式来描述统计可视化。Vega-Lite 的语法简洁且易于理解,非常适合用于快速创建可视化图表。

2. Jupyter Notebook

Jupyter Notebook 是一个开源的 Web 应用程序,允许你创建和共享包含实时代码、方程、可视化和叙述性文本的文档。Altair 与 Jupyter Notebook 无缝集成,使得数据可视化变得更加简单和直观。

3. Pandas

Pandas 是一个强大的数据处理和分析库,广泛用于数据科学和数据分析。Altair 可以与 Pandas 无缝集成,直接使用 Pandas 的 DataFrame 作为数据源来创建可视化图表。

4. Matplotlib

Matplotlib 是 Python 的一个绘图库,提供了广泛的绘图功能。虽然 Altair 提供了更简洁的可视化 API,但在某些情况下,你可能需要结合 Matplotlib 来实现更复杂的需求。

通过这些生态项目,Altair 可以与现有的数据处理和分析工具无缝集成,帮助你更高效地进行数据可视化工作。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5