Altair 可视化教程与示例
项目介绍
Altair 是一个基于 Python 的声明式统计可视化库,它使用 Vega-Lite 作为其底层可视化规范。Altair 的设计理念是通过简洁的 API 来创建美观且交互式的可视化图表。altair_notebooks 项目是 Altair 官方提供的教程和示例 Jupyter Notebooks 集合,旨在帮助用户快速上手并深入理解 Altair 的使用。
项目快速启动
安装 Altair
首先,确保你已经安装了 Python 和 Jupyter Notebook。然后,使用 pip 安装 Altair:
pip install altair
启动 Jupyter Notebook
启动 Jupyter Notebook 以开始使用 Altair:
jupyter notebook
创建第一个 Altair 图表
在 Jupyter Notebook 中创建一个新的 Python 文件,并输入以下代码:
import altair as alt
from vega_datasets import data
# 加载示例数据集
cars = data.cars()
# 创建图表
chart = alt.Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin'
)
# 显示图表
chart
运行上述代码后,你将看到一个基于汽车数据集的散点图。
应用案例和最佳实践
案例1:数据探索
Altair 非常适合用于数据探索。以下是一个使用 Altair 进行数据探索的示例:
import altair as alt
from vega_datasets import data
# 加载示例数据集
stocks = data.stocks()
# 创建图表
chart = alt.Chart(stocks).mark_line().encode(
x='date',
y='price',
color='symbol'
)
# 显示图表
chart
案例2:交互式图表
Altair 支持创建交互式图表。以下是一个使用 Altair 创建交互式图表的示例:
import altair as alt
from vega_datasets import data
# 加载示例数据集
movies = data.movies()
# 创建图表
chart = alt.Chart(movies).mark_bar().encode(
x='Major_Genre',
y='count()',
color='Major_Genre'
).interactive()
# 显示图表
chart
典型生态项目
1. Vega-Lite
Vega-Lite 是 Altair 的底层可视化规范,它提供了一种简洁的方式来描述统计可视化。Vega-Lite 的语法简洁且易于理解,非常适合用于快速创建可视化图表。
2. Jupyter Notebook
Jupyter Notebook 是一个开源的 Web 应用程序,允许你创建和共享包含实时代码、方程、可视化和叙述性文本的文档。Altair 与 Jupyter Notebook 无缝集成,使得数据可视化变得更加简单和直观。
3. Pandas
Pandas 是一个强大的数据处理和分析库,广泛用于数据科学和数据分析。Altair 可以与 Pandas 无缝集成,直接使用 Pandas 的 DataFrame 作为数据源来创建可视化图表。
4. Matplotlib
Matplotlib 是 Python 的一个绘图库,提供了广泛的绘图功能。虽然 Altair 提供了更简洁的可视化 API,但在某些情况下,你可能需要结合 Matplotlib 来实现更复杂的需求。
通过这些生态项目,Altair 可以与现有的数据处理和分析工具无缝集成,帮助你更高效地进行数据可视化工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00